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I. Introduction
 
The goal of this project was to develop a collection of projects that could be assigned as labs 
in a 12-week course focusing on advanced VLSI design and analysis. The proposed course 
would be a supplement to the existing curriculum provided in EECS 391 - VLSI Systems Design 
and would further students knowledge of modern VLSI design challenges and considerations 
while improving their CAD, analysis and simulation skills. The added experience and knowledge 
gained in this course would help Northwestern students be competitive candidates for careers in 
high-tech chip design at distinguished companies such as Intel, AMD, IBM, Texas Instruments, 
Apple and a number of other companies including defense contractors.
 
II. Overview
 
In the following sections I provide a complete working curriculum for two advanced VLSI 
projects, each containing two parts. The first asks students to design and compare 8-bit adders 
using 4 different commonly-used topologies: ripple-carry, cary-look-ahead, carry-select and 
Kogge-Stone. The second lab asks students to use their best adder to design and analyze an 
8x8 multiplier based on Booth encoding. For each assignment I have written prompts that could 
be given to students that outline the project requirements and I also present the solutions which 
the results could be graded against. In addition I have included some observations made while I 
worked on these projects that may help professors and teaching assistants guide their students.
 
I have also suggested topics for class lectures that would supplement these labs and provide 
practical VLSI design lessons.
 
Note: These projects assume that students have access to a working library of basic low-
level logic gates, presumably built during EECS 391. Otherwise, assembling and testing these 
components may prove too time consuming for students to complete the more advanced 
material.
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III. Changes From Proposal
 
Throughout the course of this project, I made several adjustments from the originally proposed 
outline. Initially we intended to have students build 32-bit adders. Once I began working, it 
quickly became clear that this would require a lot of time spent doing repetitive copy-paste work 
and would not actually develop new skills. In response, I decided 8-bit adders would sufficiently 
challenge students and serve the purpose of the comparison exercise, without weighing them 
down with mindless repetition. 
 
A third lab involving a radix-4 divider was also proposed at the initiation of this project. However, 
after researching several architectures I decided that the complexity of the circuit was not 
realistic for manual schematic design in a short period of time. Almost all the literature designed 
this adder using RTL and automated synthesis tools rather than manually in a CAD tool. 
 
Lastly, personal experience in previous courses lead me to introduce the ‘research and 
planning’ portions of each lab. In the past, many students have struggled to complete working 
designs due to errors early on, such as having the wrong block diagram or using the wrong 
testing scheme. To combat this, the professor or TA can provide feedback on Part 1 before the 
students begin building their design, giving them a better opportunity to spot and correct any 
major issues. The research portion also introduces students to academic literature, which they 
likely would not encounter during 300-level courses.
 
IV. New Outline
 
Below is a brief summary of the material covered in the labs and presented in sections V and VI 
below.
 

Lab 1: Comparison of 4 Common Adder Topologies
Part 1: Research, Plan and Hypothesize
Part 2: Design Schematics, Simulate and Analyze

A. Ripple-Carry
B. Carry-Look-Ahead
C. Carry-Select
D. Kogge-Stone

 
Lab 2: Booth Multiplier

Part 1: Research and Plan
Part 2: Design Schematic, Simulate and Analyze
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V. Lab 1: Comparison of 4 Common Adder Topologies
 
V.1 Assignment
 
Adders are one of the most heavily studied units in processor design. They are involved in 
almost every process throughout the system and often lie in the critical path. For this reason, 
improving adder performance could result in major savings in the overall system performance. 
In this lab, you will study four different commonly used adder topologies and compare their 
benefits and weaknesses.
 
Part 1: Research, Plan and Hypothesize
 
Research four common adder topologies: Ripple-Carry, Carry-Look-Ahead, Carry-Select and 
Kogge-Stone. Write a report that summarizes your findings. It should include the following:

● A block diagram or algorithm for each topology
● A paragraph clearly stating your hypothesis for how the adders will compare in terms of 

speed and area. (This should be based on data and not merely a guess.)
● Propose a testing plan (input vectors and expected outputs) to prove complete 

functionality and to determine the worst-case delay of your adders. One plan should 
work for all four topologies. (Hint: It is possible to complete both goals with one set of 
input vectors)

● Correct citation of your sources
 
Part 2: Design Schematics, Simulate and Analyze
 
Use Cadence to build 8-bit versions of each adder. Use the Analog Design Environment to 
simulate each adder to verify its functionality and determine the worst-case delay. Present your 
findings in a report that includes the following:

● Images of each schematic. If you built any sub-components, include these images as 
well. 

● Images of timing plots proving functionality for each adder. Use as many frames as 
necessary.

● Images of timing plots proving the worst-case delay for each adder. Use the marker tool 
to show time values.

● In prose, compare and contrast the adder topologies in terms of key design trade-offs 
such as speed, area, power and complexity. Use data from your designs as necessary 
to support your conclusions.

● Your images must be clear and properly labeled to receive full credit.
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V.2 Solutions
 
Part 1: Research, Plan and Hypothesize
 

● Block Diagrams - Please see Appendices A-D for block diagrams of each adder 
topology. 

 
● Hypothesis - The adders ranked in terms of worst-case delay from fastest to slowest will 

be Kogge-Stone, Carry-Select, Carry-Look-Ahead and Ripple-Carry. This is due to the 
number of “stages” or low-level gates in the longest possible path. In ripple-carry, the 
carry bit is propagated through every stage, so the worst-case system delay is the delay 
of one full-adder (max 3 gates) multiplied by the number of bits the adder can calculate 
(in this case 8) so our total is 24. In carry-look-ahead, to maintain a reasonable fanout, 
we can cascade blocks of 4-bit adders. In each the carry bit propagates through 3 gates, 
so the longest possible path is only 6 gates. In carry-select, we can exploit the 4-bit 
carry-look-ahead and then use muxes so that the longest possible path is only 5 gates. 
In Kogge-Stone, the longest path passes through stage one once (max one gate) and 
stage two three times (max two gates) for a total of seven gates. However, since these 
stages are parallel, there is no need to wait for the previous bit to finish calculating, 
resulting in a faster overall performance. 

 
● Test Vectors - To prove complete functional, you must test every bit, including the carry-

in and carry-out. To do this, we can use the following scheme
○ Set A = 10101010,  B = 01010101, CIN = 0 >>> The expected output is 

SUM = 11111111, COUT = 0. 
○ Now, leave A and B the same but switch CIN =1 >>> The expected output is 

SUM = 00000000, COUT = 1.
 
Part 2: Design Schematics, Simulate and Analyze
 

● Schematics and Timing Plots - Please see Appendices A-D
 

● Compare and Contrast - Table 1 reports the worst-case timing results and transistor 
counts for each 8-bit adder. Transistor count is a quick way to estimate area and 
provides insights to power consumption and complexity. Naturally, more transistors 
use more area, consume more dynamic power, release more leakage power, require 
more wires to connect them, and cost more. However, designs that can be arranged 
from smaller blocks are much quicker to design. Therefore, choosing the right adder 
depends significantly on the application. It is up to the designer to set priorities, weigh 
the tradeoffs and select the design that is most suitable. Although it is not a cascaded 
design, Table 1 makes it clear why Kogge-Stone is a popular choice. It’s impressive 
performance and reasonable transistor count make it the best option for many highly-
integrated systems.
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Topology Worst-Case Delay 
(pico-seconds)

NMOS Transistors PMOS Transistors

Ripple-Carry 222 168 168

Carry-Look-Ahead 179 240 240

Carry-Select 164 403 403

Kogge-Stone 102 279 279

Table 1: Design properties for four different 8-bit adder topologies
 
V.3 Notes and Troublshooting
 
There were several challenges I encountered throughout the design process that are likely to 
arise again:
 

1. The carry-look-ahead schematic diagram that most students will find on google is very 
difficult to read. There is a significant amount of congestion and there were several 
errors in mine the first time I assembled it. In addition, students who have not studied 
advanced VLSI topics may not be familiar with buffers, and therefore may think that 
buffers in the schematic are actually inverters. Clearly this destroys the logic. Since 
buffers are highly topical to practical VLSI design, it would be good to cover them in 
class, and if possible before this project gets largely underway.

 
2. The Kogge-Stone algorithm is rather challenging to follow. Most students will use the 

algorithm as outlined on Wikipedia. This is fine as long as they understand exactly what 
each term means. When I was having difficulty I wrote out several paths by hand to 
verify that the logic made sense. Students should make sure that carry-in is propagated 
by using the formula G0 = (A0 AND B0) OR CIN.
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VI. Lab 2: Booth-encoded Multiplier
 
VI.1 Assignment
 
In this lab you will design a multiplier that uses Booth encoding - a popular algorithm for fast 
multiplication. You will need to make use of one of the adders designed in Lab 1, so chose 
wisely and defend your decision. You may need to make several adjustments or build some 
other subcomponents, so start early and test them before implementing into the complete 
design.
 
Part 1: Research and Plan
 
Research Booth’s encoding and decoding algorithms as well as multiplier architectures. Write a 
brief report that includes the following:

● Block diagrams of a single encoder unit, a single decoder unit, and the overall multiplier 
architecture.

● Taking the architecture into consideration, choose an adder topology from Lab 1 and 
explain your decision. (Hint: discuss design tradeoffs).

● Propose a testing plan (input vectors and expected outputs) that will prove the complete 
functionality of your multiplier as well as determine the worst-case delay.

● Proper citation of your sources.
 
Part 2: Design Schematic, Simulate and Analyze
 
Use Cadence to build 8x8 booth-encoded multiplier. Use the Analog Design Environment to 
simulate your design to verify its functionality and determine the worst-case delay. Present your 
findings in a report that includes the following:

● Images of the schematic. If you built any sub-components, include these images as well. 
● Images of timing plots proving functionality. Use as many frames as necessary.
● Images of timing plots proving the worst-case delay. Use the marker tool to show time
● Your images must be clear and properly labeled to receive full credit.

 
VI.2 Solutions
 
Part 1: Research and Plan
 

● Block diagrams - see Appendix E.
 

● Adder Choice - I used the the Kogge-Stone adder because it was the fastest. However, 
for this design, which used a 12-bit adder rather than the 8-bit that was previously built, 
there was a significant amount of work involved in updating the Kogge-Stone. Since 
carry-lookahead works well in multiples of four, this would have been much simpler to 
implement, at the cost of performance.
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● Testing Plan - One key feature of Booth’s algorithm is that it is signed. For complete 
functional verification, we must guarantee that negative values produce the expected 
result.  However, we no longer have to worry about the propagation of the carry bit. I 
chose -13 (A = 11110011) x -95 (B = 10100001) with the expected output being 1235 (P 
= 0000010011010011). A better testing plan would exercise all of the digits (a negative 
times a positive would suffice).

 
Part 2: Design Schematic, Simulate and Analyze
 

Please see Appendix E for schematics and waveforms.
 

The worst case delay was 382ps.
 
VI.3 Notes and Troubleshooting
 
If students are able to locate the correct documentation, this Lab should not be too challenging. 
My main hold-up was with sign-extension in Cadence. Unlike Mentor Graphics, Cadence does 
not allow you to short rips from two different busses. I ended up building sign-extension units 
that use buffers to transfer from the input bus to the output  bus. 
 
VII. Additional Work and Class Topics
 
Since I have significant experience with Cadence from other independent projects, I am 
uncertain exactly how long these assignments would take students to complete. In theory, 
students should be comfortable from completing EECS 391. Should these projects be too little, 
there are an assortment of other advanced topics I considered.
 

1. Memory Cells - As the other significant component of any integrated system, it would 
benefit students to have a better understanding of different memory structures and how 
to to build them. However, HSPICE and the Analog Design Environment within Cadence 
make it challenging to properly simulate the bi-directional property of SRAM data inputs/
outputs. I built several versions of a 1-bit SRAM cell, but was unable to simulate it in the 
traditional methods.

 
2. Practical layouts - When I took 391 (Winter 2012) we did not simulate our layouts, 

meaning that most of us built circuits that would never actually work. It would be good 
practice for students to take some basic gates from their library and adjust the layouts 
until they simulate with parasitics taken into consideration.

 
3. RTL Synthesis - Students who take EECS 355 will get decent exposure to writing, 

synthesizing, and simulating VHDL and Verilog code. However, the projects in that 
class emphasize programming and interfacing with a variety of I/O devices. It would 
benefit students to gain more experience seeing the complete flow of RTL to schematic 
to layout using automated tools, since this is how the majority of work gets done in the 
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industry.
 

4. Testable designs - Different testing methods are touched on in EECS 391, however 
it was brief and lacked any practical application (homework or projects). An easy 
supplement to one of these projects would be to introduce features to simplify testing.

 
5. Low-power design

 
6. Low-temperature design

 
7. Mixed-signal design
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APPENDIX A - Ripple-Carry Adder
 
A.1 Block Diagram
 

Figure 1: Block diagram of a ripple-carry adder [1].
 
A.2 Schematics
 

Figure 2: 8-bit ripple-carry using two 4-bit blocks.
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Figure 3: 4-bit ripple-carry block using full-adders.
 

Figure 4: Full-adder .
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A.3 Functionality Waveforms
 

Figure 5: 8-bit ripple-carry adder - proof of functionality.
 
A.4 Worst-Case Delay Waveforms
 

Figure 6: 8-bit ripple-carry adder - worst-case delay = 222ps. 
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APPENDIX B - Carry-Look-Ahead Adder
 
B.1 Block Diagram
 

Figure 7: Block diagram of 4-bit carry-look-ahead adder [2].
 
B.2 Schematics
 

Figure 8: 8-bit carry-look-ahead adder using cascaded 4-bit blocks.
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Figure 9: 4-bit carry-look-ahead adder block. This is an exact replica of the block diagram 
shown in Fig 7.
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B.3 Functionality Waveforms
 

Figure 10: 8-bit carry-look-ahead adder - proof of functionality.
 
B.4 Worst-Case Delay Waveforms
 

Figure 11: 8-bit carry-look-ahead adder - worst-case delay = 179ps. 
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APPENDIX C - Carry-Select Adder
 
C.1 Block Diagram
 

Figure 12: Block diagram of an 8-bit carry-select adder [3].
 
C.2 Schematics
 

Figure 13: 8-bit carry-select adder using 4-bit CLA (see Appendix B.2).
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C.3 Functionality Waveforms
 

Figure 14: 8-bit carry-select adder - proof of functionality.
 
C.4 Worst-Case Delay Waveforms
 

Figure 15: 8-bit carry-select adder - worst-case delay = 164ps.
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APPENDIX D - Kogge-Stone Adder
 
D.1 Block Diagram
 

Figure 16: Algorithmic representation of an 8-bit Kogge-Stone adder [4].
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D.2 Schematics
 

Figure 17: 8-bit Kogge-Stone adder. The rectangular blocks implement the Stage 1 
algorithm and the circular blocks implement the Stage 2 algorithm (see Figs 18 and 19).

 

Figure 18: Kogge-Stone Stage 1 block.
 

Figure 19: Kogge-Stone Stage 2 block.
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D.3 Functionality Waveforms
 

Figure 20: 8-bit Kogge-Stone adder - proof of functionality 
 
D.4 Worst-Case Delay Waveforms
 

Figure 21: 8-bit Kogge-Stone adder - worst-case delay = 104ps.
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APPENDIX E - Booth Encoding Multiplier
 
E.1 Block Diagram
 

Figure 22: Block diagram for 8x8 booth-encoding multiplier [5].
 

E2. Schematics
 

Figure 23: 8x8 Booth encoding multiplier using 12-bit Kogge-Stone adders. Other 
components in this schematic include four Booth encoders (see Fig. 24), four 9-bit 

decoders (see Figs. 25 and 26), sign-extension units and buffers.
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Figure 24: Single Booth encoding unit.
 

Figure 25: 9-bit Booth decoding unit.
 

Figure 26: Close-up of a portion of the 9-bit booth decoding unit showing single booth 
decoder units (see Fig. 27) and half adders (see Fig. 28).
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Figure 27: Single booth decoder unit.
 

FIgure 28: Half adder.
 

E3. Functional Waveforms
 

Figure 29: 8x8 Booth multiplier - proof of functionality. (-13 x -95 = 1235)
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E4. Worst-case Delay Waveforms
 

Figure 30: 8x8 Booth multiplier - worst-case delay = 382ps.
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