
Digital Compatible Synthesis, Placement and Implementation of

Mixed-Signal Time-Domain Computing
Zhengyu Chen, Hai Zhou, and Jie Gu

Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA

zhengyuchen2015@u.northwestern.edu, {haizhou, jgu}@northwestern.edu

ABSTRACT
Mixed-signal time-domain computing (TC) has recently drawn

significant attention due to its high efficiency in applications such

as machine learning accelerators. However, due to the nature of

analog and mixed-signal design, there is a lack of a systematic flow

of synthesis and place & route for time-domain circuits. This paper

proposed a comprehensive design flow for TC. In the front-end, a

variation-aware digital compatible synthesis flow is proposed. In

the back-end, a placement technique using graph-based

optimization engine is proposed to deal with the especially

stringent matching requirement in TC. Simulation results show

significant improvement over the prior analog placement methods.

A 55nm test chip is used to demonstrate that the proposed design

flow can meet the stringent timing matching target for TC with

significant performance boost over conventional digital design.

1 INTRODUCTION

Traditional digital circuits rely on the scaling of technology and

supply voltage Vdd to improve the power consumption of the

circuits, following the energy consumption equation of αCVdd2

where C represents the capacitance of the circuit and α is the

associated activity factor. As the technology scaling slows down,

the energy consumption for digital circuits has reached a bottleneck

leading to the urgent need for alternative computing methods. For

example, approximate computing provides a good tradeoff between

power consumption and accuracy [1]. However, such a technique

still follows conventional Boolean operation principles and does

not fundamentally change the energy limitation for digital circuits.

Analog computing, which encodes information in analog

voltage, provides another solution for energy efficient computing.

Numerous examples have shown that analog computing can exceed

the energy efficiency of digital design [2]. Unfortunately, analog

computing suffers from the issues such as static power

consumption, and incompatibility to automatic digital design flow.

Recently, a new class of computing, mixed-signal time-domain

computing (TC) emerges as a promising alternative to the existing

computing methods [3-6]. TC utilizes digital circuits to encode and

process data in time domain. Essentially, TC is similar to analog

computing as the data is linearly encoded in a signal line rather than

multi-bit binary signals. Benefit from the usage of digital circuits,

TC offers the digital compatibility and the technology scalability.

Despite of many existing demonstration of highly efficient

operation using TC [3-6], most of existing work for time-domain

computing is based on analog/mixed-signal design flow, which

requires significant manual design and layout effort. This is

partially due to the stringent timing control requirement of the

technology leading to the difficulty of adoption into a large-scale

design. Hence, it is important to develop a comprehensive design

methodology for the automatic synthesis, place & route for TC. It

is worth to mention that time-based design has been well explored

in traditional mixed-signal circuits such as all digital phase-locked

loops (ADPLL), ring-based analog-digital converter (ADC) as well

as mixed-signal sensors such as time-domain configurable analog

modules and time-based resistive sensor interfaces [7, 8].

To address such a growing demand and deliver the missing

design automation element, this paper lays out a systematic design

automation flow for TC. More specifically, a digital compatible

synthesis and backend flow is developed with novel variation

aware RTL mapping and ACG-based placement algorithm to

enable the automation of TC design. The proposed scheme is

compared with existing analog placement and commercial EDA

tool showing significant improvement in the matching performance.

A test chip is used to show the satisfactions of design specification,

e.g. mismatch, using the proposed digital compatible design flow.

2 TIME-DOMAIN COMPUTING (TC)
2.1 Time-Domain Computing Overview

TC encodes information into the time or delay of digital circuits

and perform computation in time domain [3-6]. The system

normally consists of time encoders for digital to time conversion,

time-domain logic modules and optional time decoders for time to

digital conversion as shown in Fig. 1.

Time Logic

B
A Max(A, B)

A
B

Max(A, B)

A
B

Min(A, B)

B
A Min(A, B)

MAX MIN
A

B

Out
Outb A

B
Out
Outb

CMP

...

Time Encoding Time Decoding

Figure 1: Overview of time-domain computing.

To facilitate the time-domain logic operation, a set of “standard

cell” like modules are built for operation in time domain. One of

the key advantages for TC is that all the building blocks are digital

modules making the whole design digital friendly. Examples of TC

circuits are also shown in Fig. 1.

2.2 Challenges of Time-domain Computing

As TC relies on the precise timing control for information

processing, variation and mismatch of signal timing could lead to

computation errors. As the least-significant-bit (LSB) resolution is

pre-defined, e.g. 25ps used in this work, a variation of timing

beyond this value will lead to single-bit error. Specially, local

 Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

DAC '19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06…$15.00

 https://doi.org/10.1145/3316781.3317800

variation or mismatch creates the largest threat to the operation

similar to analog computing. Comparing to digital design, a much

more stringent backend layout is needed in consideration of

matching, variation, cross-talk and signal slew rate. In addition, as

TC usually performs more complex algorithms [3, 4], the signal

paths and matching components in TC are much more complicated

than a typical analog design leading to more challenges in the

front-end or back-end design for TC.

2.3 Proposed Digital Compatible Design Methodology

TC-logic
Synthesis

TC-logic Place
& Route

• Embedded Time-based RTL
• Digital RTL Compatible

• Technology Mapping
• Variation Aware Synthesis

• ACG-based Flow
• Matching-aware Placement
• Simulated Annealing
• Critical-signal Handling

 module NN_module();

 ...

 assign mul0 = a0 *(T) b0;

 assign mul1 = a1 *(T) b1;

 ...

 endmodule

Max

Max

Max

A

B

C

D

(TC) RTL Gate Netlist

Design Specification
Variation and

Performance Target

Netlist Optimization

Solution: Netlist, Constraints

Sizing & Resolution

Variation & Area

TC Cells Monte-Carlo
Simulation with Various Size

Variation Sensitivity
Function Characterization

Time-domain Library
Characterization

Layout

TC RTL

Figure 2: Flowchart of proposed TC automation flow.

Fig. 2 shows the overview of the proposed digital compatible

design automation flow. Particularly, a specially developed time-

domain RTL code is attached to conventional Verilog language to

denote the special design of the time-domain logic operation.

Based on the hybrid RTL codes, the synthesis tool provides logic

synthesis and technology mapping to create a gate-level netlist

using both standard cells and digital friendly time-domain modules.

Variation awareness is implemented into the synthesis process. At

the back-end, an ACG-based placement technique is developed to

handle the stringent signal matching requirement of TC design.

3 SYTHESIS OF TIME-DOMAIN LOGIC

 To create a digital-compatible design flow for TC design,

synthesis has to be performed to create gate-level netlist similar to

the conventional digital design. The proposed technique is realized

by embedding a special plug-in script into existing RTL/synthesis

flow. It handles not only the generation of time-domain cells but

also special requirements in TC, such as variation.

3.1 Overview of Proposed TC Synthesis Technique

3.1.1 Special Synthesis Requirement in TC Design

Since the data is carried by the time or delay of the circuit

cells, variation has large impact on the accuracy of design. Thus,

minimizing the variation of the data path is quite critical for TC.

The special design considerations of TC design are listed as:

1) Determining the size of the modules in TC circuit is a trade-

off between area/energy consumption and variation/error-rate of

the whole design. Increasing the size of a module can decrease the

variation but increase the area and energy of the module.

2) The single-bit delay that represents “1” in digital-domain

must be carefully chosen. Shortening the single-bit delay, can boost

the performance but increase the error rate of the final result.

3.1.2 Proposed Synthesis Flow

The bottom of Fig. 2 shows the flow of the proposed synthesis

technique: (1) the RTL with customized syntax for time-domain

logics is utilized to perform a special TC logic synthesis process.

As a result, both conventional digital and time-domain logics are

synthesized into an initial gate-level netlist. The size of each cell is

set to the smallest size at this step. (2) The initial netlist is then sent

to a netlist optimizer to exercise the sizing options of each module

to meet the variation budget while minimizing area consumption.

3.2 Implementation of TC Synthesis

3.2.1 Special Logic Mapping in TC Design

The proposed logic synthesis script can recognize special

syntax used for the TC RTL. In the TC RTL, a special syntax is

developed to denote the TC operation, e.g. add and multiplication.

The special keyword “(T)” after the operation symbol “+” or “×” is

used to denote the TC operation as shown in Table 1. The synthesis

script works as a plug-in script on top of conventional synthesis tool.

Special mapping functions are called for generating time-domain

circuits similar to the conventional technology mapping. For

instance, the “?” operation symbol in time-domain RTL, is mapped

into a time-domain comparator which was shown in Fig. 1.

3.2.2 Variation Sensitivity Function

The variation sensitivity function is introduced for netlist

optimization. We define the 3-sigma variation of TC modules,

which is a function of the size s as 𝜎(𝑠). Apparently, the 𝜎(𝑠)

decreases as s increases. The area of TC modules is a function of

the size s as 𝐴(𝑠). The variation sensitivity function is shown as:

𝐹𝑠𝑒𝑛(𝑠) = 𝛾
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 (1)

where
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 term represents the variation sensitivity comes from the

module, and 𝛾 term represents the significance of the module, e.g.

module in a convergent path. As most TC cells are standard-cell

like, we follow the standard cell sizing convention, e.g. 1X, 2X, etc.

3.2.3 Netlist Optimization

Assume that we have totally n modules, X1, X2, … Xn, the size

of each module is s1, s2, … sn. Besides, there are p critical paths need

to be considered in the placement. The optimization problem of

netlist is then formed in (2) and (3):

Minimize ∑ 𝐴(𝑠𝑖)
𝑛
𝑖=1 (2)

 ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃, 𝑠. 𝑡. √∑ 𝜎𝑝
2(𝑠𝑖)

𝑛
𝑖=1 ≤ 𝜎𝑇 (3)

where 𝜎𝑝(𝑠𝑖) is the variation comes from Xi, and 𝐴(𝑠𝑖) is the area

of Xi. The pseudo code of the optimization is shown as follows.

Algorithm 1 Netlist Optimization Algorithm

Input: Initial netlist of module X1, X2, …Xn, with minimum sizing s1, s2, … sn.

Output: Netlist which satisfies variation budget with minimum area

1: for all critical paths p in the netlist do

2: while √∑ 𝜎𝑖
2(𝑠𝑖)𝑛

𝑖=1 > 𝜎𝑇 do

3: for i = 1 to n do

4: find the module j = i, with maximum 𝐹𝑠𝑒𝑛(𝑠𝑗)

5: end

6: Increase the size of module j by 1X, update sj

7: end

8: end

9: Return the netlist with current sizing

Given the initial netlist generated by TC logic mapping from

TC RTL with minimum sizing, we first check if the variation of all

critical paths meets the budget 𝜎𝑇 . If yes, the optimization is

completed. Otherwise, the following step is performed in which we

traverse the netlist to find out the most effective module in the

critical path, i.e. highest variation sensitivity. The size s of this

module is then increased by 1X. We keep repeating the previous

steps until the variation targets of all critical paths are met.

3.2.4 Design Example on Time-domain Neural Network Module

An example of a simple TC neural network building block of

vector by matrix classifier [5] is shown in Fig. 3 (a). The circuit

contains 2 MAC and 1 CMP in time domain with RTL given in

Table 1. The synthesised TC netlist with proper sizing after

optimization is shown in Table 2. Fig. 3 (b) shows the design

trade-off between the area and error rate (variation) by a given LSB

resolution. Under different resolution and error tolerance, the

optimal area of such a TC NN module is shown in Fig. 3 (b). With

the same resolution, the area drops with the variation increases. For

example, the areas are 195um2 and 110um2 with variation of

0.3 LSB and 1 LSB respectively when resolution is set to 20ps.

TE

a0

M
U

X

w0a

TE

an

M
U

X

wna

TE

b0

M
U

X

w0b

TE

bn

M
U

X

wnb

C

M

P

0.0

0.5

1.0

1.5

2.0

50 100 150 200

V
a

ri
a

ti
o

n
 (

L
S

B
)

Area (um2)

40ps 30ps 20ps

Error Free

Variation
Target

Vector-by-Matrix Classifier Operation for NN Node:
CMP(an wna, bn wnb)

 (a) (b)

Figure 3: (a) Schematic NN module, (b) design trade-off

between error tolerance and area with given single bit delay.

Table 1: Example RTL implementation of TC-neural node.
1

2

…

6

…

11

12

13

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, out);

 input [1:0] a0, a1, a2, a3;

 …

 assign mul0 = a0 *(T) b0;

 …

 assign mac1 = mul2 +(T) mul3;

 assign out = (mac0 >= mac1) ?(T) 0 : 1;

endmodule

Table 2: Example netlist of TC-neural node from synthesis.
1

2

…

6

…

13

14

15

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, in, out);

 input [1:0] a0, a1, a2, a3;

 …

 TC_TE_X3 I0 (.IN(in), .DIN(a0), .OUT(te0));

 …

 TC_MUX_X4 I7 (.A(mul2), .B(te3), .S(b3), .OUT(mac1));

 TC_CMP_X2 I8 (.a(mac0), .b(mac1), .out(out));

endmodule

4 PROPOSED MIXED-SIGNAL PLACEMENT

Due to the lack of prior techniques on automatic placement for

TC circuits [3-6], in this section, we propose a practical and

efficient placement technique for TC circuit utilizing adjacent

constraint graph (ACG) based optimization engine to deal with the

stringent matching requirements. It is worth to mention that

although automatic placement has been proposed previously for

analog/mixed-signal design [9, 10], TC poses special challenges,

i.e. massive-stage-symmetry (MASS), as referred in this paper, and

hence requires special techniques not available from the prior work.

The special matching requirement of MASS for time domain

circuits are highlighted as follows:

1) Module symmetry and stage symmetry constraint: modules

within certain groups must be placed symmetrically with respect to

a horizontal or a vertical axis to maintain the matching of critical

TC signal. Moreover, modules on symmetry paths need to be place

symmetrically in each stage.

2) Clustering constraint: certain TC modules must be placed

near to each other in order to isolate the critical TC modules from

other digital modules.

3) Shortest critical signal path constraint: the wire length of

critical paths must be minimized in order to relieve the variation

impact of TC circuit and improve slew rate of the signals.

Similar constraints are observed in the existing analog

placement/floorplan design, but TC design has more challenges due

to its larger numbers of components as described in the follows.

4.1 Preliminaries

4.1.1 Comparison with Previous Analog Placement Work

Topological representations are widely used in solving analog

placement problems, in which, the relative positions between the

modules are encoded. Typical topological representations are

slicing tree [11], sequence-pairs (SP) [12], O-tree [13], B*-trees

[14], and TCG-S [15]. Most of these works have been applied to

handle the symmetry constraint and other constraints like the

centroid constraint. However, these representations are not suitable

for solving the MASS placement problem of TC design as

explained as follows.

X1

X2

X3

X5

X7

X8

X10
X11

Y11

Y13

Y1 Y5
Y9

Y10

Y2 Y6

Y3 Y7

Y4 Y8

symmetry

group

axis of

symmetry

Y15 Y18
Y17

Y16

X12

symmetry

group

axis of

symmetry

2-module

symmetry

pair

4-module

symmetry

quadruple

symmetry

sets

X4

X6

Y14

p0
p1
p2
p3

 (a) (b)

Figure 4: Symmetry group in (a) conventional analog design,

(b) time-domain computing design.

1) A complete representation is preferred in order to efficiently

handle the special constraints like symmetry and critical path

constraints. For example, tree-based representation doesn’t provide

complete topological information, which makes it harder to check

the relations, e.g. horizontal relation, between modules.

2) When dealing with symmetry constraint, we form a

symmetry group with multiple symmetry pairs. However, in most

of analog placement problem, each symmetry pair in the symmetry

group only contains few modules as shown in Fig. 4 (a). On the

other hand, in the TC design, large numbers of modules, defined by

the algorithm, e.g. LDPC [3], need to be allocated symmetrically

through hierarchies as shown in Fig. 4 (b).

3) For TC design, we not only need to place the modules

symmetrically within a set, but also need to guarantee the matching

across different hierarchy on the long signal paths. As shown in

Fig.4 (b), the modules on path p0 must be symmetric with the

modules on paths p1 – p3 leading to stringent multi-path matching

problems for sequence of modules. This not only requires a massive

symmetry placement within a symmetry group but also requires

carefully match at each stage. Thus, the MASS becomes a special

challenge in the TC placement.

Adjacent Constraint Graph (ACG) [16] representation is chosen

in this work due to the following advantages: compared with

existing placement techniques, ACG has the advantage of

efficiency and succinctness when dealing with the symmetry and

other constraints. Without the redundant edges, the number of

edges in ACG is O(nlog(n)), much smaller than the O(n2) number

of edges in TCG-S or SP. ACG is also more flexible than other

representations in performing packing.

4.1.2 Problem Formulation

Assume we are given a set of n modules with areas Ai where i

= 1. . . n, together with a set of j nets N1, N2 . . . Nj. Our objective is

to obtain a placement F of the circuit satisfying all the placement

constraints mentioned previously while minimizing a cost function:

C(𝐹) = A(𝐹) + 𝛼 × W(𝐹) + 𝛽 × W_penalty(𝐹) (4)

where A(F) is the total area of F, W(F) is the total wire length of

F, W_penalty(F) is the total wire length of wires between the

modules which violated the constraint after the packing stage. α and

β are empirical coefficients used for regulating the weights of wire

length and wiring violation.

4.2 Adjacent Constraint Graph (ACG) Representation

The basic idea of the ACG representation, briefly described

below, is to encode any rectangle packing as an ordered module

sequences with edges which indicates the spatial relations [16].

As an illustration, for a floorplan given in Fig. 5 (a), its

constraint graph in both horizontal and vertical directions are

shown in Fig. 5 (b). As the essential idea of constraint graph is used

for avoiding module overlap, any two modules must have at least

one relation (“left” or “below to”). Thus, over-specification has no

benefit in terms of representation. Since those redundant edges are

unnecessary for placement, we can remove those edges and the

result is an ACG representation (Fig. 5 (c)). The corresponding

ACG data structure is shown in Fig. 5 (d). The vertices will be

doubly linked in a linear order. Edges are all directed from left to

right. The edges above the vertex line represent horizontal (H)

relations and those below represent vertical (V) relations.

x1

x3 x5

x2

x4

x1

x3 x5

x2

x4
H V

x5

x2x1

x3

x4

X1

X4

X2

X5
X3 X1 X2 X3 X4 X5

 (a) (b) (c) (d)

Fig. 5. (a) A floorplan, (b) constraint graphs in horizontal (solid

edges) and vertical (dotted edges) directions, (c) ACG Graph,

(d) ACG data structure.

4.3 Proposed TC Placement Approach

Switch modules

Initial

ACG

Perturbation

Editing edges

Cost Calculation

Area &

wiring

cost

Extra

Penalty

Simulated Annealing
Packing

Y3''

Y4

Y1 Y2

Y3

Y3'

Y1' Y2'

Y1'' Y2''

Y1''' Y2'''

Y5 Y8

Y7

Y6

Solution
Group

exchange

Y5 Y8

Y7

Y6

Figure 6: Flowchart of the proposed placement.

Simulated annealing is employed as the basic searching engine

in our approach with ACG as the representation. Our proposed

placement algorithm works as follows. It first generates an initial

ACG representation following the default cells order, which also

satisfies all the constraints proposed by the designer. After the

initial solution is generated, the simulated annealing process is

applied. In each iteration the following steps are performed: (1)

three categories of perturbations/moves are introduced. All these

perturbations are complete in terms of the searching space; (2)

After the perturbation, a new ACG is generated and the

corresponding packing is produced based on the longest path

algorithm; (3) Area and interconnect cost with extra penalties are

computed based on the new packing. (4) Check whether the

annealing process should continue based on the current temperature

and cost. The flowchart is shown in Fig. 6.

4.4 Handling of Placement Constraints in TC

4.4.1 Handling of Symmetry Constraint

In TC circuit, symmetry constraint (marked in blue in Fig. 7 (a))

can be handled as follows (we assume the symmetric modules are

symmetric with respect to a horizontal axis):

1) If modules Y1, Y2, Y3, and Y4 are required to be symmetric,

all of them must be in vertical relations. In the other word, every

two of them must be connected by horizontal edges in the ACG.

2) The x coordinates of modules Y1, Y2, Y3, and Y4 must be

same which can be regulated during the packing stage.

3) The distances between adjacent modules must be same.

Y5

Y9

Y3

Y4

Y1 Y6

Y2 Y7

Y8

Cluster

group

Y3

Y1 X1
Y2

Y5

Y6

Y7

Y4
P0

P1

<=d

Y11

Y1 Y5
Y9

Y10

Y2 Y6

Y3 Y7

Y4 Y8

symmetry

group

symmetry

pairs

 (a) (b) (c)

Figure 7: Example of (a) symmetric constraint, (b) clustering

constraint, (c) critical signal path constraint.

4.4.2 Handling of Clustering Constraint

Clustering constraint can be handled by forcing the modules in

the same clustering group to abut each other in ACG representation.

Besides, we introduce the penalty term in the cost function to force

the placement to obey the constraint. An example of clustering

constraint among modules Y1-Y9 is shown in Fig. 7 (b).

4.4.3 Handling of Critical-Signal Path Constraint

To handle this constraint, the total wire lengths of these paths

need be as short as possible (P1 and P0 in Fig. 7 (c)). The constraint

can be handled by (1) guaranteeing horizontal relations for the

modules in same critical path in ACG, e.g. Y1, Y2, Y3 and Y4; (2)

increasing the weight of nets which are on the critical paths when

calculating the cost of total wire length. As a result, the placement

engine tends to move the modules which are not on critical signal

path, e.g. X1, away from the critical path P0.

4.5 Set of Perturbations/Moves

Y19

Y12

Y1 Y5
Y17

Y18

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y9

Y10

Y11

group exchange

Y16 Y20

Y19

Y12

Y1 Y5
Y17

Y18

Y2 Y6

Y3 Y7

Y4

Y8

Y13
Y15

Y14

Y9

Y10

Y11

Y16
Y20

type 1

type 2

type 3

Y1 Y5

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14 Y14 Y
1
4

 (a) (b) (c)

Figure 8: Example of moves in (symmetry group are marked in

blue): (a) category 1, (b) category 2, (c) category 3.

We employ the following set of moves to perturb a current

candidate ACG. The moves/perturbations can be divided into three

categories: (a) exchange of two random modules, (b) group

exchange of the symmetric sets, and (c) editing edges in the current

ACG representation. The details of moves are given as follows:

1) In the first category (Fig. 8 (a)), there are three different types

of exchanges: (1) Exchange two random modules which are not in

any of the symmetry groups. (2) Exchange two random modules

within a symmetric set. (3) Exchange one module which is inside

of one symmetry group and another module which is outside of that

symmetry group. This movement cannot be guaranteed to not

violate the symmetry constraint. Thus, a special checker is

implemented to check the feasibility of the new generated ACG. If

such a move violates the constraints, penalty will be added to the

cost function shown in eq. (4).

2) Fig.8 (b) shows one example of second category. This group

exchange also needs special checker to check the feasibility of the

new ACG after such a move. It provides the chance of moving away

the modules which are located inside of a symmetry group.

3) The third category involves the modification of ACG edges

including (1) changing current edge type from horizontal to vertical

or vice versa; (2) Adding or removing the existing current edges

while following the ACG requirement. We only allow modifying

the edges of the modules which are outside of symmetry group. In

this way, all the constraint within the symmetry group cannot be

violated. An example of modify the edge between Y14 and Y15 from

vertical to horizontal is shown in Fig. 8 (c).

4.6 Packing and Routing

A new packing algorithm is derived from conventional packing

scheme based on the longest path algorithm. Different from

previous work, the proposed packing algorithm allows us to pack

the selected modules in respect to the symmetry axis instead of only

to the lower bottom corner of plane [12, 14]. The packing example

of conventional and our proposed ways are shown in Fig. 9 with

symmetric modules marked in blue.

Y12

Y9

Y1 Y5

Y10

Y11

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14

Y16

Y17

Y18

Y12

Y9

Y1 Y5
Y10

Y11

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14 Y16

Y17
Y18

 (a) (b)

Figure 9: Example of packing (a) to lower-bottom corner, and

(b) respect to the symmetry axis.

We utilize the Innovus tool to handle the routing job. Since the

TC cells follow the digital cell’s implementation and are well

organized after the proposed placement, e.g. the cells on the same

critical path are placed abut to each other, the Innovus tool can

handle the routing job appropriately. However, we expect more

sophisticated routing methods to be developed for larger TC design

as a future work.

5 EXPERIMENTAL RESULTS

5.1 Time-domain WTA Operation Implementation

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

WTA2

WTA2

WTA2

WTA2

WTA2

WTA2

WTA2 Decode

Logic

Out_AB
Out_CD Out[2:0]

A

B

C

D

E

F

G

H

critical path 0

Stage I Stage II Stage III

Out_CD

Out_EF

critical path 1

critical path 7

Out_AB

Out_GH

Figure 10: Topology and implementation of WTA in TC.

We compare our proposed ACG-based placement flow to other

existing work [12,14] on a winner-take-all (WTA) circuit, which is

a commonly used digital module in machine learning based

classifiers. Fig.10 shows the design of the 8-input 6-bit WTA. The

algorithm of WTA is based on binary comparison tree. The critical

signals are propagated through 3 stages and the matching of 8

critical paths is the key concern of the design. The total number of

critical digital modules for matching are 84 which is much larger

than a typical matching problem observed in an analog design.

We experiment the placement of WTA by different approaches:

(a) use B* tree based placement method from [14], (b) use sequence

pair (SP) based placement method from [12], (c) use the proposed

placement method. The layout results of approaches (a), (b) and (c)

are shown in the Fig. 11. All the methods maintain a good

symmetry property in the 1st stage (WTA2). However, both B* tree

based and SP based placement methods have troubles in placing the

modules properly in the stages 2 and 3 as (1) the modules in 2nd and

3rd stages are not placed in the central region with respect to the 1st

stage leading to large signal routing mismatch between critical

signals; (2) The critical TC modules are not separated with other

non-critical modules causing the slew rate degradation of the

critical signals. These failures are mainly due to the following

reasons: (1) both previous placement approaches pack the modules

from lower bottom corner leading to difficulty in placing the

selected modules in respect to the symmetry axis; (2) Both previous

placement methods are short of the ability to deal with the

clustering and critical-path constraints. As a result, they failed to

place the critical time-domain modules to be close to each other

avoiding non-critical modules to block the critical paths. On the

other hand, due to the efficiency and succinctness of ACG-based

representation, it’s much easier to handle the cluster and critical

path constraints. As a result, the above issues can be properly

resolved by the proposed ACG-based placement with good

matching through stages of critical paths (Fig.11 (c)).

 (a) (b) (c)

Figure 11: Layout of placement methods: (a) B* tree based [14],

(b) sequence pair based [12], (c) proposed design in this work.

Δt = 11.8 ps

t (ps)

V
 (

V
)

0
.0

0
.6

1
.2

Δt = 4.5 ps

t (ps)

V
 (

V
)

0
.0

0
.6

1
.2

Δt = 5.3 ps

t (ps)

V
 (

V
)

0
.0

0
.6

1
.2

Δt < 1 ps

t (ps)

slew rate = 22 ps slew rate = 19 ps slew rate = 13 ps slew rate = 26 ps

0
.0

0
.6

1
.2

 (a) (b) (c) (d)

Figure 12: Simulation result of mismatch for (a) B* tree based

placement [14], (b) sequence pair based placement [12], (c) our

proposed technique, (d) conventional digital design.

After the layout is generated from Innovus, we import the

layout back into Cadence Virtuoso to perform spice simulation with

parasitic extraction. The simulation result of matching for the 8

critical paths is shown in Fig 12 in comparison among B* tree

method, SP method, proposed method and conventional digital

design using EDA tools. As we can see, the mismatch from using

B* tree based and SP based placement method are better than that

from the conventional digital flow. However, the mismatch from

these two methods are still significantly larger than our proposed

ACG-based placement method whose mismatch is less than 1ps.

Thus, the proposed placement methodology provides both the

efficiency and accuracy in dealing with TC design. Table 3

summarizes the performance of different methods. The algorithms

are implemented in C++ and run on a Windows machine with

2.6GHz i7 Quad-core and 8GB RAM. Note that ACG-based

placement method also achieves the lowest runtime mainly due to

the efficient and succinct representation when deal with complex

matching constraints. For example, the number of edges in ACG is

O(nlog(n)), while it’s O(n2) in SP. Even though the edge number is

only O(n) in B* tree, it lacks a complete topology information used

for dealing with TC constraints which makes the number of

searching iteration larger.

Table 3: Performance Comparison for Placement Methods.

Methods B* tree [14] SP [12] This work

Mismatch (ps) 5.3 4.5 1

Slew rate (ps) 22 19 13

Run time (s) 23 85 18

Area (um2) 1484 1536 1600

5.2 Time-domain Image Processing Implementation

For demonstration, we adopt a basic facial recognition

algorithm into a hybrid ASIC design with time-domain

accelerators. The operations of the image recognition algorithm

involve three steps: (1) feature extraction which performs median

filtering and detects edges in four directions. (2) Vector formation;

(3) Classification where the generated feature vector is classified

by a winner-take-all (WTA) classifier. In our design, the median

filter for feature extraction and WTA for final classification were

designed in time-domain to remove the bottlenecks of the

algorithm [17]. In particular, the proposed synthesis and placement

techniques were applied on the WTA design leading to the layout

for the fabricated chips.

5.3 Measurement Results

The 55nm test chip was fabricated and measured across 10

chips. No error was observed at internal time-domain results or

final classification at the design target speed of 1.33GHz.

Figure 13: Mismatch measurement results; y axis denotes the

absolute variation from the nominal delay.

Fig. 13 shows the measured on-chip mismatch of 8 critical

paths from 10 chips in WTA circuits. The mismatches were

measured by using an on-chip time-digital-converter (TDC) with

5ps resolution. As shown, the measured mismatch is within 0.5

LSB, which verifies the feasibility of handling variation (synthesis)

and layout mismatch (placement) of the proposed methodology.

No systematic mismatch was observable from the measurement

proving the good matching performance of the placement

algorithm. The mismatch was dominated by the random process

variation which has been properly budgeted (within half of LSB,

i.e. 12ps as 3-sigma variation target) from the proposed synthesis

flow. The die micrograph and the specification of WTA is shown

in Fig. 14. The design is compared with conventional ASIC with

standard synthesis and place and route implementation. A 42% area

saving, a 1.7X speedup and a 23% power saving, is observed in the

time-domain WTA accelerator compared to ASIC implementation.

The overall image recognition processor operates at 1.33GHz with

a state-of-art throughput of 72 frames per second.

3
2
 µ

m

260 µm

WTATest TDC

Technology 55 nm

Frequency (GHz) 1.33

Total Chip Area

(mm2)

0.64

 ASIC TC

WTA Area (μm2) 2800 1600

WTA Power (mW) 3.1 2.4

WTA Frequency

(GHz)

1.2 2

Figure 14: Die photo and specifications of the WTA design.

6 CONCLUSION
This paper proposed a comprehensive digital compatible design

flow including front-end synthesis and backend placement for TC.

In the synthesis stage, our proposed technique can handle the

variation requirement while minimizing the estimated area of the

circuit. In the backend stage, an ACG-based placement algorithm

is developed to handle the complex placement constraints for TC

design. The comparison with prior analog placement schemes

shows much improved matching performance from the proposed

method. The proposed synthesis and placement flow is

demonstrated by a 55nm test chip showing on-target mismatch

results and significant performance enhancement from TC

compared with digital implementation.

REFERENCE
[1] Yong Shim, et al, “Low-Power Approximate Convolution Computing Unit with

Domain-Wall Motion Based “Spin-Memristor” for Image Processing

Applications”, IEEE/ACM DAC, 2016

[2] F. N. Buhler, et al, “A 3.43TOPS/W 48.9pJ/Pixel 50.1nJ/Classification 512

Analog Neuron Sparse Coding Neural Network with On-Chip Learning and

Classification in 40nm CMOS”, VLSI Symposium, 2017.

[3] Daisuke Miyashita, et al, ” An LDPC Decoder With Time-Domain Analog and

Digital Mixed-Signal Processing”, IEEE JSSC, 2014.

[4] Anvesha Amravati, et al,”A 55nm Time-Domain Mixed-Signal Neuromorphic

Accelerator with Stochastic Synapses and Embedded Reinforcement Learning

for Autonomous Micro-Robots”, ISSCC, 2018.

[5] Daisuke Miyashita, et al, “Time-Domain Neural Network: A 48.5 TSOp/s/W

Neuromorphic Chip Optimized for Deep Learning and CMOS Technology”,

IEEE ASSCC, 2016.

[6] M. Liu, et al, ” A Scalable Time-based Integrate-and-Fire Neuromorphic Core

with Brain-Inspired Leak and Local Lateral Inhibition Capabilities”, IEEE

CICC, 2017.

[7] Yunju Choi, Yoontaek ,Seung-Heon Baek, Sung-Joon Lee, Jaeha Kim, “A

Field-Programmable Mixed-signal IC with Time-domain Configurable Analog

Blocks”, IEEE Symposium on VLSI Circuits, 2016.

[8] Jorge Marin, E. Sacco, J. Vergauwen,Georges Gielen, “A Single-Temperature-

Calibration 0.18-µm CMOS Time-Based Resistive Sensor Interface with Low

Drift over a− 40° C to 175° C Temperature Range”, IEEE ESSCIRC, 2018.

[9] Lin, P.H., et al, “Analog Placement Based on Hierarchical Module Clustering”,

IEEE/ACM DAC, 2008.

[10] Biying Xu, et al, “A scaling compatible, synthesis friendly VCO-based delta-

sigma ADC design and synthesis methodology”, IEEE/ACM DAC, 2017.

[11] Chang-Tzu Lin, et al, “An Efficient Genetic Algorithm for Slicing Floorplan

Area Optimization”, IEEE ISCAS, 2002.

[12] Qiang Ma, et al, “Simultaneous Handling of Symmetry, Common Centroid, and

General Placement Constraints”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2011.

[13] P.-N. Guo, et al, “An O-Tree Representation of Non-Slicing Floorplan and Its

Applications,” IEEE/ACM DAC, 1999.

[14] Pang-Yen Chou, et al, “Heterogeneous B*-trees for Analog Placement with

Symmetry and Regularity Considerations,” IEEE ICCAD, 2011.

[15] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal Coupling of P*- Admissible

Representations For General Floorplans,” IEEE Trans. CAD, 2004.

[16] Hai Zhou and Jia Wang, “ACG–Adjacent Constraint Graph for General

Floorplans”, IEEE ICCD, 2004.

[17] Z. Chen, et al, “A Time-Domain Computing Accelerated Image Recognition

Processor With Efficient Time Encoding and Non-Linear Logic Operation,”

IEEE JSSC, Nov. 2019.

