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ABSTRACT 
Mixed-signal time-domain computing (TC) has recently drawn 

significant attention due to its high efficiency in applications such 

as machine learning accelerators. However, due to the nature of 

analog and mixed-signal design, there is a lack of a systematic flow 

of synthesis and place & route for time-domain circuits. This paper 

proposed a comprehensive design flow for TC. In the front-end, a 

variation-aware digital compatible synthesis flow is proposed. In 

the back-end, a placement technique using graph-based 

optimization engine is proposed to deal with the especially 

stringent matching requirement in TC.  Simulation results show 

significant improvement over the prior analog placement methods.  

A 55nm test chip is used to demonstrate that the proposed design 

flow can meet the stringent timing matching target for TC with 

significant performance boost over conventional digital design. 

1 INTRODUCTION 

Traditional digital circuits rely on the scaling of technology and 

supply voltage Vdd to improve the power consumption of the 

circuits, following the energy consumption equation of αCVdd2 

where C represents the capacitance of the circuit and α is the 

associated activity factor.  As the technology scaling slows down, 

the energy consumption for digital circuits has reached a bottleneck 

leading to the urgent need for alternative computing methods.   For 

example, approximate computing provides a good tradeoff between 

power consumption and accuracy [1].  However, such a technique 

still follows conventional Boolean operation principles and does 

not fundamentally change the energy limitation for digital circuits.   

Analog computing, which encodes information in analog 

voltage, provides another solution for energy efficient computing.  

Numerous examples have shown that analog computing can exceed 

the energy efficiency of digital design [2].    Unfortunately, analog 

computing suffers from the issues such as static power 

consumption, and incompatibility to automatic digital design flow.   

Recently, a new class of computing, mixed-signal time-domain 

computing (TC) emerges as a promising alternative to the existing 

computing methods [3-6].  TC utilizes digital circuits to encode and 

process data in time domain.  Essentially, TC is similar to analog 

computing as the data is linearly encoded in a signal line rather than 

multi-bit binary signals.  Benefit from the usage of digital circuits, 

TC offers the digital compatibility and the technology scalability.   

Despite of many existing demonstration of highly efficient 

operation using TC [3-6], most of existing work for time-domain 

computing is based on analog/mixed-signal design flow, which 

requires significant manual design and layout effort.  This is 

partially due to the stringent timing control requirement of the 

technology leading to the difficulty of adoption into a large-scale 

design.  Hence, it is important to develop a comprehensive design 

methodology for the automatic synthesis, place & route for TC.  It 

is worth to mention that time-based design has been well explored 

in traditional mixed-signal circuits such as all digital phase-locked 

loops (ADPLL), ring-based analog-digital converter (ADC) as well 

as mixed-signal sensors such as time-domain configurable analog 

modules and time-based resistive sensor interfaces [7, 8].  

To address such a growing demand and deliver the missing 

design automation element, this paper lays out a systematic design 

automation flow for TC.  More specifically, a digital compatible 

synthesis and backend flow is developed with novel variation 

aware RTL mapping and ACG-based placement algorithm to 

enable the automation of TC design.  The proposed scheme is 

compared with existing analog placement and commercial EDA 

tool showing significant improvement in the matching performance. 

A test chip is used to show the satisfactions of design specification, 

e.g. mismatch, using the proposed digital compatible design flow.   

2 TIME-DOMAIN COMPUTING (TC) 
2.1 Time-Domain Computing Overview 

TC encodes information into the time or delay of digital circuits 

and perform computation in time domain [3-6]. The system 

normally consists of time encoders for digital to time conversion, 

time-domain logic modules and optional time decoders for time to 

digital conversion as shown in Fig. 1.   
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Figure 1: Overview of time-domain computing. 

To facilitate the time-domain logic operation, a set of “standard 

cell” like modules are built for operation in time domain.  One of 

the key advantages for TC is that all the building blocks are digital 

modules making the whole design digital friendly.  Examples of TC 

circuits are also shown in Fig. 1. 

2.2 Challenges of Time-domain Computing 

As TC relies on the precise timing control for information 

processing, variation and mismatch of signal timing could lead to 

computation errors.  As the least-significant-bit (LSB) resolution is 

pre-defined, e.g. 25ps used in this work, a variation of timing 

beyond this value will lead to single-bit error. Specially, local 
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variation or mismatch creates the largest threat to the operation 

similar to analog computing.  Comparing to digital design, a much 

more stringent backend layout is needed in consideration of 

matching, variation, cross-talk and signal slew rate.  In addition, as 

TC usually performs more complex algorithms [3, 4], the signal 

paths and matching components in TC are much more complicated 

than a typical analog design leading to more challenges in the 

front-end or back-end design for TC.  

2.3 Proposed Digital Compatible Design Methodology 
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  module NN_module(); 

           ...

       assign mul0 = a0 *(T) b0;

       assign mul1 = a1 *(T) b1;

             ...

  endmodule
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Figure 2: Flowchart of proposed TC automation flow.  

Fig. 2 shows the overview of the proposed digital compatible 

design automation flow.  Particularly, a specially developed time-

domain RTL code is attached to conventional Verilog language to 

denote the special design of the time-domain logic operation.  

Based on the hybrid RTL codes, the synthesis tool provides logic 

synthesis and technology mapping to create a gate-level netlist 

using both standard cells and digital friendly time-domain modules.  

Variation awareness is implemented into the synthesis process.  At 

the back-end, an ACG-based placement technique is developed to 

handle the stringent signal matching requirement of TC design.   

3 SYTHESIS OF TIME-DOMAIN LOGIC 

      To create a digital-compatible design flow for TC design, 

synthesis has to be performed to create gate-level netlist similar to 

the conventional digital design.  The proposed technique is realized 

by embedding a special plug-in script into existing RTL/synthesis 

flow. It handles not only the generation of time-domain cells but 

also special requirements in TC, such as variation. 

3.1  Overview of Proposed TC Synthesis Technique 

3.1.1 Special Synthesis Requirement in TC Design   

Since the data is carried by the time or delay of the circuit 

cells, variation has large impact on the accuracy of design. Thus, 

minimizing the variation of the data path is quite critical for TC. 

The special design considerations of TC design are listed as: 

1)  Determining the size of the modules in TC circuit is a trade-

off between area/energy consumption and variation/error-rate of 

the whole design. Increasing the size of a module can decrease the 

variation but increase the area and energy of the module. 

2)  The single-bit delay that represents “1” in digital-domain 

must be carefully chosen. Shortening the single-bit delay, can boost 

the performance but increase the error rate of the final result.  

3.1.2 Proposed Synthesis Flow  

The bottom of Fig. 2 shows the flow of the proposed synthesis 

technique: (1) the RTL with customized syntax for time-domain 

logics is utilized to perform a special TC logic synthesis process.  

As a result, both conventional digital and time-domain logics are 

synthesized into an initial gate-level netlist. The size of each cell is 

set to the smallest size at this step. (2) The initial netlist is then sent 

to a netlist optimizer to exercise the sizing options of each module 

to meet the variation budget while minimizing area consumption.  

3.2 Implementation of TC Synthesis  

3.2.1 Special Logic Mapping in TC Design 

The proposed logic synthesis script can recognize special 

syntax used for the TC RTL. In the TC RTL, a special syntax is 

developed to denote the TC operation, e.g. add and multiplication.  

The special keyword “(T)” after the operation symbol “+” or “×” is 

used to denote the TC operation as shown in Table 1. The synthesis 

script works as a plug-in script on top of conventional synthesis tool.  

Special mapping functions are called for generating time-domain 

circuits similar to the conventional technology mapping.  For 

instance, the “?” operation symbol in time-domain RTL, is mapped 

into a time-domain comparator which was shown in Fig. 1.     

3.2.2 Variation Sensitivity Function 

The variation sensitivity function is introduced for netlist 

optimization. We define the 3-sigma variation of TC modules, 

which is a function of the size s as 𝜎(𝑠). Apparently, the  𝜎(𝑠) 

decreases as s increases. The area of TC modules is a function of 

the size s as 𝐴(𝑠). The variation sensitivity function is shown as: 

𝐹𝑠𝑒𝑛(𝑠) =  𝛾
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
                                       (1) 

where 
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 term represents the variation sensitivity comes from the 

module, and 𝛾 term represents the significance of the module, e.g. 

module in a convergent path. As most TC cells are standard-cell 

like, we follow the standard cell sizing convention, e.g. 1X, 2X, etc. 

3.2.3 Netlist Optimization  

Assume that we have totally n modules, X1, X2, … Xn, the size 

of each module is s1, s2, … sn. Besides, there are p critical paths need 

to be considered in the placement. The optimization problem of 

netlist is then formed in (2) and (3): 

Minimize  ∑ 𝐴(𝑠𝑖)
𝑛
𝑖=1                                      (2) 

 ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃, 𝑠. 𝑡. √∑ 𝜎𝑝
2(𝑠𝑖)

𝑛
𝑖=1   ≤  𝜎𝑇                    (3) 

where 𝜎𝑝(𝑠𝑖)  is the variation comes from Xi, and 𝐴(𝑠𝑖) is the area 

of Xi. The pseudo code of the optimization is shown as follows. 
 

Algorithm 1 Netlist Optimization Algorithm  

Input:     Initial netlist of module X1, X2, …Xn, with minimum sizing s1, s2, … sn. 

Output:  Netlist which satisfies variation budget with minimum area 

1:    for all critical paths p in the netlist do 

2:            while  √∑ 𝜎𝑖
2(𝑠𝑖)𝑛

𝑖=1  >  𝜎𝑇 do 

3:                    for i = 1 to n do 

4:            find the module j = i, with maximum 𝐹𝑠𝑒𝑛(𝑠𝑗) 

5:    end  

6:    Increase the size of module j by 1X, update sj 

7:            end 

8:    end 

9:    Return the netlist with current sizing 

Given the initial netlist generated by TC logic mapping from 

TC RTL with minimum sizing, we first check if the variation of all 

critical paths meets the budget 𝜎𝑇 . If yes, the optimization is 

completed. Otherwise, the following step is performed in which we 

traverse the netlist to find out the most effective module in the 

critical path, i.e. highest variation sensitivity.  The size s of this 

module is then increased by 1X.  We keep repeating the previous 

steps until the variation targets of all critical paths are met.   



3.2.4 Design Example on Time-domain Neural Network Module 

An example of a simple TC neural network building block of 

vector by matrix classifier [5] is shown in Fig. 3 (a). The circuit 

contains 2 MAC and 1 CMP in time domain with RTL given in 

Table 1. The synthesised TC netlist with proper sizing after 

optimization is shown in Table 2. Fig. 3 (b) shows the design 

trade-off between the area and error rate (variation) by a given LSB 

resolution. Under different resolution and error tolerance, the 

optimal area of such a TC NN module is shown in Fig. 3 (b). With 

the same resolution, the area drops with the variation increases. For 

example, the areas are 195um2 and 110um2 with variation of 

0.3 LSB and 1 LSB respectively when resolution is set to 20ps. 
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Figure 3: (a) Schematic NN module, (b) design trade-off 

between error tolerance and area with given single bit delay. 

Table 1: Example RTL implementation of TC-neural node. 
1 

2 

… 

6 

… 

11 

12 

13 

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, out); 

     input [1:0] a0, a1, a2, a3; 

                             … 

     assign mul0 = a0 *(T) b0; 

                             … 

     assign mac1 = mul2 +(T) mul3; 

     assign out = (mac0 >= mac1) ?(T) 0 : 1; 

endmodule 

Table 2: Example netlist of TC-neural node from synthesis. 
1 

2 

… 

6 

… 

13 

14 

15 

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, in, out); 

     input [1:0] a0, a1, a2, a3; 

                                      … 

    TC_TE_X3 I0 (.IN(in), .DIN(a0), .OUT(te0)); 

                                      … 

     TC_MUX_X4 I7 (.A(mul2), .B(te3), .S(b3), .OUT(mac1)); 

     TC_CMP_X2 I8 (.a(mac0), .b(mac1), .out(out)); 

endmodule 

4 PROPOSED MIXED-SIGNAL PLACEMENT 

Due to the lack of prior techniques on automatic placement for 

TC circuits [3-6], in this section, we propose a practical and 

efficient placement technique for TC circuit utilizing adjacent 

constraint graph (ACG) based optimization engine to deal with the 

stringent matching requirements.  It is worth to mention that 

although automatic placement has been proposed previously for 

analog/mixed-signal design [9, 10], TC poses special challenges, 

i.e. massive-stage-symmetry (MASS), as referred in this paper, and 

hence requires special techniques not available from the prior work.  

The special matching requirement of MASS for time domain 

circuits are highlighted as follows: 

1) Module symmetry and stage symmetry constraint: modules 

within certain groups must be placed symmetrically with respect to 

a horizontal or a vertical axis to maintain the matching of critical 

TC signal. Moreover, modules on symmetry paths need to be place 

symmetrically in each stage.  

2)  Clustering constraint: certain TC modules must be placed 

near to each other in order to isolate the critical TC modules from 

other digital modules.  

3)  Shortest critical signal path constraint: the wire length of 

critical paths must be minimized in order to relieve the variation 

impact of TC circuit and improve slew rate of the signals. 

Similar constraints are observed in the existing analog 

placement/floorplan design, but TC design has more challenges due 

to its larger numbers of components as described in the follows.   

4.1  Preliminaries 

4.1.1 Comparison with Previous Analog Placement Work 

Topological representations are widely used in solving analog 

placement problems, in which, the relative positions between the 

modules are encoded. Typical topological representations are 

slicing tree [11], sequence-pairs (SP) [12], O-tree [13], B*-trees 

[14], and TCG-S [15]. Most of these works have been applied to 

handle the symmetry constraint and other constraints like the 

centroid constraint. However, these representations are not suitable 

for solving the MASS placement problem of TC design as 

explained as follows. 
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Figure 4: Symmetry group in (a) conventional analog design, 

(b) time-domain computing design.   

1)  A complete representation is preferred in order to efficiently 

handle the special constraints like symmetry and critical path 

constraints. For example, tree-based representation doesn’t provide 

complete topological information, which makes it harder to check 

the relations, e.g. horizontal relation, between modules. 

2) When dealing with symmetry constraint, we form a 

symmetry group with multiple symmetry pairs. However, in most 

of analog placement problem, each symmetry pair in the symmetry 

group only contains few modules as shown in Fig. 4 (a). On the 

other hand, in the TC design, large numbers of modules, defined by 

the algorithm, e.g. LDPC [3], need to be allocated symmetrically 

through hierarchies as shown in Fig. 4 (b).  

3) For TC design, we not only need to place the modules 

symmetrically within a set, but also need to guarantee the matching 

across different hierarchy on the long signal paths. As shown in 

Fig.4 (b), the modules on path p0 must be symmetric with the 

modules on paths p1 – p3 leading to stringent multi-path matching 

problems for sequence of modules. This not only requires a massive 

symmetry placement within a symmetry group but also requires 

carefully match at each stage. Thus, the MASS becomes a special 

challenge in the TC placement.    

Adjacent Constraint Graph (ACG) [16] representation is chosen 

in this work due to the following advantages: compared with 

existing placement techniques, ACG has the advantage of 

efficiency and succinctness when dealing with the symmetry and 

other constraints. Without the redundant edges, the number of 

edges in ACG is O(nlog(n)), much smaller than the O(n2) number 

of edges in TCG-S or SP. ACG is also more flexible than other 

representations in performing packing. 

4.1.2 Problem Formulation 

Assume we are given a set of n modules with areas Ai where i 

= 1. . . n, together with a set of j nets N1, N2 . . . Nj. Our objective is 

to obtain a placement F of the circuit satisfying all the placement 

constraints mentioned previously while minimizing a cost function:  

C(𝐹) = A(𝐹) + 𝛼 × W(𝐹) + 𝛽 × W_penalty(𝐹)               (4) 



where A(F) is the total area of F, W(F) is the total wire length of 

F, W_penalty(F) is the total wire length of wires between the 

modules which violated the constraint after the packing stage. α and 

β are empirical coefficients used for regulating the weights of wire 

length and wiring violation. 

4.2 Adjacent Constraint Graph (ACG) Representation 

The basic idea of the ACG representation, briefly described 

below, is to encode any rectangle packing as an ordered module 

sequences with edges which indicates the spatial relations [16].  

As an illustration, for a floorplan given in Fig. 5 (a), its 

constraint graph in both horizontal and vertical directions are 

shown in Fig. 5 (b). As the essential idea of constraint graph is used 

for avoiding module overlap, any two modules must have at least 

one relation (“left” or “below to”). Thus, over-specification has no 

benefit in terms of representation. Since those redundant edges are 

unnecessary for placement, we can remove those edges and the 

result is an ACG representation (Fig. 5 (c)). The corresponding 

ACG data structure is shown in Fig. 5 (d). The vertices will be 

doubly linked in a linear order. Edges are all directed from left to 

right.  The edges above the vertex line represent horizontal (H) 

relations and those below represent vertical (V) relations.  
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Fig. 5. (a) A floorplan, (b) constraint graphs in horizontal (solid 

edges) and vertical (dotted edges) directions, (c) ACG Graph, 

(d) ACG data structure. 

4.3 Proposed TC Placement Approach 
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Figure 6: Flowchart of the proposed placement.  

Simulated annealing is employed as the basic searching engine 

in our approach with ACG as the representation. Our proposed 

placement algorithm works as follows. It first generates an initial 

ACG representation following the default cells order, which also 

satisfies all the constraints proposed by the designer. After the 

initial solution is generated, the simulated annealing process is 

applied. In each iteration the following steps are performed: (1) 

three categories of perturbations/moves are introduced. All these 

perturbations are complete in terms of the searching space; (2) 

After the perturbation, a new ACG is generated and the 

corresponding packing is produced based on the longest path 

algorithm; (3) Area and interconnect cost with extra penalties are 

computed based on the new packing. (4) Check whether the 

annealing process should continue based on the current temperature 

and cost. The flowchart is shown in Fig. 6.  

4.4 Handling of Placement Constraints in TC 

4.4.1 Handling of Symmetry Constraint 

In TC circuit, symmetry constraint (marked in blue in Fig. 7 (a)) 

can be handled as follows (we assume the symmetric modules are 

symmetric with respect to a horizontal axis): 

1)  If modules Y1, Y2, Y3, and Y4 are required to be symmetric, 

all of them must be in vertical relations. In the other word, every 

two of them must be connected by horizontal edges in the ACG.  

2) The x coordinates of modules Y1, Y2, Y3, and Y4 must be 

same which can be regulated during the packing stage.  

3) The distances between adjacent modules must be same.  
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Figure 7: Example of (a) symmetric constraint, (b) clustering 

constraint, (c) critical signal path constraint. 

4.4.2 Handling of Clustering Constraint  

Clustering constraint can be handled by forcing the modules in 

the same clustering group to abut each other in ACG representation. 

Besides, we introduce the penalty term in the cost function to force 

the placement to obey the constraint. An example of clustering 

constraint among modules Y1-Y9 is shown in Fig. 7 (b). 

4.4.3 Handling of Critical-Signal Path Constraint 

To handle this constraint, the total wire lengths of these paths 

need be as short as possible (P1 and P0 in Fig. 7 (c)). The constraint 

can be handled by (1) guaranteeing horizontal relations for the 

modules in same critical path in ACG, e.g. Y1, Y2, Y3 and Y4; (2) 

increasing the weight of nets which are on the critical paths when 

calculating the cost of total wire length. As a result, the placement 

engine tends to move the modules which are not on critical signal 

path, e.g. X1, away from the critical path P0. 

4.5 Set of Perturbations/Moves 
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Figure 8: Example of moves in (symmetry group are marked in 

blue): (a) category 1, (b) category 2, (c) category 3. 

We employ the following set of moves to perturb a current 

candidate ACG. The moves/perturbations can be divided into three 

categories: (a) exchange of two random modules, (b) group 

exchange of the symmetric sets, and (c) editing edges in the current 

ACG representation. The details of moves are given as follows:  

1) In the first category (Fig. 8 (a)), there are three different types 

of exchanges: (1) Exchange two random modules which are not in 

any of the symmetry groups. (2) Exchange two random modules 

within a symmetric set. (3) Exchange one module which is inside 

of one symmetry group and another module which is outside of that 

symmetry group. This movement cannot be guaranteed to not 

violate the symmetry constraint. Thus, a special checker is 

implemented to check the feasibility of the new generated ACG. If 

such a move violates the constraints, penalty will be added to the 

cost function shown in eq. (4). 



2) Fig.8 (b) shows one example of second category. This group 

exchange also needs special checker to check the feasibility of the 

new ACG after such a move. It provides the chance of moving away 

the modules which are located inside of a symmetry group.  

3) The third category involves the modification of ACG edges 

including (1) changing current edge type from horizontal to vertical 

or vice versa; (2) Adding or removing the existing current edges 

while following the ACG requirement. We only allow modifying 

the edges of the modules which are outside of symmetry group. In 

this way, all the constraint within the symmetry group cannot be 

violated. An example of modify the edge between Y14 and Y15 from 

vertical to horizontal is shown in Fig. 8 (c). 

4.6 Packing and Routing 

A new packing algorithm is derived from conventional packing 

scheme based on the longest path algorithm. Different from 

previous work, the proposed packing algorithm allows us to pack 

the selected modules in respect to the symmetry axis instead of only 

to the lower bottom corner of plane [12, 14]. The packing example 

of conventional and our proposed ways are shown in Fig. 9 with 

symmetric modules marked in blue.  

Y12

Y9

Y1 Y5

Y10

Y11

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14

Y16

Y17

Y18

Y12

Y9

Y1 Y5
Y10

Y11

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14 Y16

Y17
Y18

 
                       (a)                                                 (b) 

Figure 9: Example of packing (a) to lower-bottom corner, and 

(b) respect to the symmetry axis. 

We utilize the Innovus tool to handle the routing job. Since the 

TC cells follow the digital cell’s implementation and are well 

organized after the proposed placement, e.g. the cells on the same 

critical path are placed abut to each other, the Innovus tool can 

handle the routing job appropriately. However, we expect more 

sophisticated routing methods to be developed for larger TC design 

as a future work.  

5 EXPERIMENTAL RESULTS 

5.1 Time-domain WTA Operation Implementation 
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Figure 10: Topology and implementation of WTA in TC. 

We compare our proposed ACG-based placement flow to other 

existing work [12,14] on a winner-take-all (WTA) circuit, which is 

a commonly used digital module in machine learning based 

classifiers. Fig.10 shows the design of the 8-input 6-bit WTA. The 

algorithm of WTA is based on binary comparison tree. The critical 

signals are propagated through 3 stages and the matching of 8 

critical paths is the key concern of the design. The total number of 

critical digital modules for matching are 84 which is much larger 

than a typical matching problem observed in an analog design.  

We experiment the placement of WTA by different approaches: 

(a) use B* tree based placement method from [14], (b) use sequence 

pair (SP) based placement method from [12], (c) use the proposed 

placement method. The layout results of approaches (a), (b) and (c) 

are shown in the Fig. 11. All the methods maintain a good 

symmetry property in the 1st stage (WTA2). However, both B* tree 

based and SP based placement methods have troubles in placing the 

modules properly in the stages 2 and 3 as (1) the modules in 2nd and 

3rd stages are not placed in the central region with respect to the 1st 

stage leading to large signal routing mismatch between critical 

signals; (2)  The critical TC modules are not separated with other 

non-critical modules causing the slew rate degradation of the 

critical signals. These failures are mainly due to the following 

reasons: (1) both previous placement approaches pack the modules 

from lower bottom corner leading to difficulty in placing the 

selected modules in respect to the symmetry axis; (2) Both previous 

placement methods are short of the ability to deal with the 

clustering and critical-path constraints. As a result, they failed to 

place the critical time-domain modules to be close to each other 

avoiding non-critical modules to block the critical paths. On the 

other hand, due to the efficiency and succinctness of ACG-based 

representation, it’s much easier to handle the cluster and critical 

path constraints. As a result, the above issues can be properly 

resolved by the proposed ACG-based placement with good 

matching through stages of critical paths (Fig.11 (c)). 

 
             (a)                             (b)                                 (c) 

Figure 11: Layout of placement methods: (a) B* tree based [14], 

(b) sequence pair based [12], (c) proposed design in this work. 
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Figure 12: Simulation result of mismatch for (a) B* tree based 

placement [14], (b) sequence pair based placement [12], (c) our 

proposed technique, (d) conventional digital design. 

After the layout is generated from Innovus, we import the 

layout back into Cadence Virtuoso to perform spice simulation with 

parasitic extraction. The simulation result of matching for the 8 

critical paths is shown in Fig 12 in comparison among B* tree 

method, SP method, proposed method and conventional digital 

design using EDA tools. As we can see, the mismatch from using 

B* tree based and SP based placement method are better than that 

from the conventional digital flow. However, the mismatch from 

these two methods are still significantly larger than our proposed 

ACG-based placement method whose mismatch is less than 1ps. 

Thus, the proposed placement methodology provides both the 

efficiency and accuracy in dealing with TC design. Table 3 

summarizes the performance of different methods. The algorithms 

are implemented in C++ and run on a Windows machine with 

2.6GHz i7 Quad-core and 8GB RAM. Note that ACG-based 



placement method also achieves the lowest runtime mainly due to 

the efficient and succinct representation when deal with complex 

matching constraints. For example, the number of edges in ACG is 

O(nlog(n)), while it’s O(n2) in SP. Even though the edge number is 

only O(n) in B* tree, it lacks a complete topology information used 

for dealing with TC constraints which makes the number of 

searching iteration larger.  

Table 3: Performance Comparison for Placement Methods. 

Methods B* tree [14] SP [12] This work 

Mismatch (ps) 5.3 4.5 1 

Slew rate (ps) 22 19 13 

Run time (s) 23 85 18 

Area (um2) 1484 1536 1600 

5.2 Time-domain Image Processing Implementation 

For demonstration, we adopt a basic facial recognition 

algorithm into a hybrid ASIC design with time-domain 

accelerators. The operations of the image recognition algorithm 

involve three steps: (1) feature extraction which performs median 

filtering and detects edges in four directions. (2) Vector formation; 

(3) Classification where the generated feature vector is classified 

by a winner-take-all (WTA) classifier. In our design, the median 

filter for feature extraction and WTA for final classification were 

designed in time-domain to remove the bottlenecks of the 

algorithm [17].  In particular, the proposed synthesis and placement 

techniques were applied on the WTA design leading to the layout 

for the fabricated chips.  

5.3 Measurement Results 

The 55nm test chip was fabricated and measured across 10 

chips. No error was observed at internal time-domain results or 

final classification at the design target speed of 1.33GHz.   

 
Figure 13: Mismatch measurement results; y axis denotes the 

absolute variation from the nominal delay.  

Fig. 13 shows the measured on-chip mismatch of 8 critical 

paths from 10 chips in WTA circuits.  The mismatches were 

measured by using an on-chip time-digital-converter (TDC) with 

5ps resolution. As shown, the measured mismatch is within 0.5 

LSB, which verifies the feasibility of handling variation (synthesis) 

and layout mismatch (placement) of the proposed methodology.  

No systematic mismatch was observable from the measurement 

proving the good matching performance of the placement 

algorithm.  The mismatch was dominated by the random process 

variation which has been properly budgeted (within half of LSB, 

i.e. 12ps as 3-sigma variation target) from the proposed synthesis 

flow. The die micrograph and the specification of WTA is shown 

in Fig. 14. The design is compared with conventional ASIC with 

standard synthesis and place and route implementation. A 42% area 

saving, a 1.7X speedup and a 23% power saving, is observed in the 

time-domain WTA accelerator compared to ASIC implementation.  

The overall image recognition processor operates at 1.33GHz with 

a state-of-art throughput of 72 frames per second.  
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Figure 14: Die photo and specifications of the WTA design.  

6 CONCLUSION 
This paper proposed a comprehensive digital compatible design 

flow including front-end synthesis and backend placement for TC. 

In the synthesis stage, our proposed technique can handle the 

variation requirement while minimizing the estimated area of the 

circuit.  In the backend stage, an ACG-based placement algorithm 

is developed to handle the complex placement constraints for TC 

design. The comparison with prior analog placement schemes 

shows much improved matching performance from the proposed 

method.  The proposed synthesis and placement flow is 

demonstrated by a 55nm test chip showing on-target mismatch 

results and significant performance enhancement from TC 

compared with digital implementation. 
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