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Abstract - This work presents the first 3D/4D sparse CNN
(SCNN) accelerator for point cloud image recognition on low
power devices. A special hopping-index rule book method and
efficient data search technique were developed to mitigate the
overhead of coordinate management for SCNN. A 65nm test
chip for 3D/4D images was demonstrated with 7.09-13.6
TOPS/W power efficiency and state-of-the-art frame rate.
Introduction

Recently efficient hardware support of 3D/4D imaging for
AR/VR applications has become critically important with
LIDAR sensors being available for smartphone or tablet.
Previously, a point cloud-based neural network (PNN)
processor for simpler hand gesture recognition was developed
through approximate sampling and grouping in 2D projected
point-cloud, which may cause uneven distribution of sampled
points with poor accuracy for large-scale 3D images [1]. A
more recent work proposed a page-based memory management
technique to handle non-uniform distribution of point cloud
using page ID [2]. However, it is still based on dense format,
hence incurring higher computing cost and data storage. As
shown in Fig. 1, compared with 2D case, applications in 3D/4D
space experience exponentially increase of the computation
workload while also observe dramatic increase of sparsity, e.g.
97.5% in 3D or 99.9% in 4D cases. As in Fig. 1, considering
the computation overhead of index/coordinate management for
sparse input format, SCNN becomes advantageous at sparsity
beyond 30%~40%, with benefits increasing with sparsity level.
Hence, fundamentally, SCNN provides more efficient solution
for high dimensional sparse images. Although a simulation
based SCNN was proposed earlier for 2D image, it cannot be
directly applied to 3D/4D point-cloud images [3]. This work
presents the first comprehensive solution for SCNN for 3D/4D
image recognition. As highlighted in Fig. 1, the contributions
of this work are: (1) A 3D/4D SCNN accelerator based on the
widely used record-holding Minkowski engine [4] was
implemented on the silicon achieving state-of-the-art
performance compared with prior 3D cases [2]; (2) A
hardware friendly “rule book” solution for SCNN is developed
leading to a speedup of 89.3X for 3D and 270.1X for 4D cases
compared with conventional dense CNN; (3) To mitigate
overhead of the coordinate management for SCNN, a
hardware-efficient coordinate generation and search solution
with octree data structure and computation skipping method
are implemented rendering 12X speedup enhancing the
benefits of sparse convolution; (4) A look-up table (LUT)
based weight reuse scheme is utilized to reduce weight
duplications leading to 26.9X saving of memory space.

SCNN Algorithm and Hardware Implementation

Fig. 2 shows the 3D/4D point cloud processing sequence
and the chip architecture which contains (1) a 10 x 10 PE array
as central compute engine, (2) a top controller for data flow
management, (3) output accumulation and post processing
modules for SCNN, (4) various memory banks with special
indexing schemes to support the rule book and SCNN
operations. The operation sequence includes coordinate
management for rule book generation and subsequent sparse

convolution, where input point cloud images are divided into
sub-spaces for processing by the chip. The 8-bit reconfigurable
PE array is designed to support both coordinate management
and SCNN for compact chip implementation.

Fig. 3 shows details of the “rule book™ flow at the core of
SCNN and hardware implementation. For 3D/4D SCNN, the
input pixels are saved with coordinate (X, Y, Z, T) associated
with feature values eliminating the massive redundant zeros in
the 3D/4D space. In SCNN mode, PE array is configured into
MAC operations processing sparse inputs and kernel values.
As spatial relationship is lost in sparse coding, a special map
representing coordinate relationship is needed, referred as
“Rule Book” [4]. A software implementation of Rule Book
with expensive hash function is unsuitable for small-size ASIC
accelerator due to the overwhelming memory operations for
keyword search and high computation cost of hash functions.
Hence, an efficient hardware friendly “hopping-index rule
book” (HIRB) is developed in this work with multiple hopping
of memory banks through use of data indexes. As shown in
Fig.3, first, sparse inputs are loaded into PE array for MAC
operation and the last 16-bits “end” address is sent to index
memory to provide the stop address for current input. Second,
the core index memory performs loading of multiple weights
of different outputs for the same input until stop address is
reached. Third, for MAC operation, to fetch the weight value
accordingly, instead of duplicating the channel-wise weights,
an 8-bit index indicating mapping between kernel and input
shared by all channels is used so that weights stored in LUT
are fetched according to index, rendering 13.5X~26.9X
memory saving varying with channel number as in Fig. 1.
Fourth, the multiple MAC outputs from the same input point
are stored into different target addresses according to HIRB.
This data flow not only solves the irregular sparse convolution
data mapping, but also provide a general SCNN solution for
variable dimensions, 2D/3D/4D and beyond.

Fig. 4 shows implementation of coordinate manager which
is used to generate the HIRB for building spatial/temporal
relationship among sparse points. Distance information
between 3D/4D points are calculated by the PE array. Only two
points with a distance lower than a threshold are recorded as
neighbors denoted in the HIRB. As a brute-force sequential
search incurs high compute cost, an octree data structure and
data skipping technique are used to accelerate the operations.
With entire space divided into subspace from the octree data
structure and the sparse data stored in incremental orders of X,
Y, Z, T, neighborhood searching is significantly narrowed.
Moreover, partial distances in Z axis or T axis are calculated
first and skipped if the partial distance is larger than a threshold.
Overall, the use of octree data structure and distance skipping
lead to a 12X saving on computing cost reducing coordinate
management overhead from 67.5% to 14.7% of total operation
further enhancing the benefits of SCNN.

Measurement Results

A 65nm test chip was fabricated and measured for the
proposed SCNN accelerator as in Fig. 5. The chip operates
from the nominal 300MHz/1V to S0MHz/0.5V with efficiency



from 0.78TOPS/W to 1.5TOPS/W without considering
sparsity or 7.09TOPS/W to 13.6TOPS/W considering sparsity
for 8-bit SCNN. The coordinate management takes 14.7% of
runtime consuming 35% less power than SCNN. Fig. 5 shows
examples of 3D/4D segmentation and corresponding mIOU
scores for 3D and 4D point cloud images as well as the
accuracy of this work on database ScanNet [5] and Synthia4D
[6] with only 0.1% accuracy loss compared with FP results.
Compared with conventional dense CNN, a speedup of 89.3X
for 3D image or 270.1X for 4D image is achieved. Fig.6 shows
comparison with prior point-cloud works. This is the first
sparse convolution accelerator targeting 3D/4D point-cloud
image/videos. While the raw framerate of 7.2fps is lower than
[2] due to 5X larger CNN model size and 15X smaller PE array
used in this work, a 7.5X higher framerate is achieved when
normalized to similar model size and PE array due to the
significant runtime reduction of sparse convolution. In
addition, this is the only accelerator that also handles 4D point-
cloud videos.
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Fig. 1 3D/4D point cloud image recognition tasks, challenges and
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Fig. 3 Detailed description on SCNN operatlon, developed hopping-index
rule book (HIRB) and hardware mapping in this work.
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Fig. 4. Chip implementation of coordinate management for HIRB
generation and associated speedup techniques.
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Fig. 5. Measurement and segmentation results with 3D and 4D examples.
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