
A Sparse Convolution Neural Network Accelerator for 3D/4D Point-Cloud Image Recognition on
Low Power Mobile Device with Hopping-Index Rule Book for Efficient Coordinate Management

Qiankai Cao, Jie Gu
Northwestern University, Evanston, IL, USA

Abstract - This work presents the first 3D/4D sparse CNN
(SCNN) accelerator for point cloud image recognition on low
power devices. A special hopping-index rule book method and
efficient data search technique were developed to mitigate the
overhead of coordinate management for SCNN. A 65nm test
chip for 3D/4D images was demonstrated with 7.09–13.6
TOPS/W power efficiency and state-of-the-art frame rate.

Introduction
Recently efficient hardware support of 3D/4D imaging for

AR/VR applications has become critically important with
LIDAR sensors being available for smartphone or tablet.
Previously, a point cloud-based neural network (PNN)
processor for simpler hand gesture recognition was developed
through approximate sampling and grouping in 2D projected
point-cloud, which may cause uneven distribution of sampled
points with poor accuracy for large-scale 3D images [1]. A
more recent work proposed a page-based memory management
technique to handle non-uniform distribution of point cloud
using page ID [2]. However, it is still based on dense format,
hence incurring higher computing cost and data storage. As
shown in Fig. 1, compared with 2D case, applications in 3D/4D
space experience exponentially increase of the computation
workload while also observe dramatic increase of sparsity, e.g.
97.5% in 3D or 99.9% in 4D cases. As in Fig. 1, considering
the computation overhead of index/coordinate management for
sparse input format, SCNN becomes advantageous at sparsity
beyond 30%~40%, with benefits increasing with sparsity level.
Hence, fundamentally, SCNN provides more efficient solution
for high dimensional sparse images. Although a simulation
based SCNN was proposed earlier for 2D image, it cannot be
directly applied to 3D/4D point-cloud images [3]. This work
presents the first comprehensive solution for SCNN for 3D/4D
image recognition. As highlighted in Fig. 1, the contributions
of this work are: (1) A 3D/4D SCNN accelerator based on the
widely used record-holding Minkowski engine [4] was
implemented on the silicon achieving state-of-the-art
performance compared with prior 3D cases [2]; (2) A
hardware friendly “rule book” solution for SCNN is developed
leading to a speedup of 89.3X for 3D and 270.1X for 4D cases
compared with conventional dense CNN; (3) To mitigate
overhead of the coordinate management for SCNN, a
hardware-efficient coordinate generation and search solution
with octree data structure and computation skipping method
are implemented rendering 12X speedup enhancing the
benefits of sparse convolution; (4) A look-up table (LUT)
based weight reuse scheme is utilized to reduce weight
duplications leading to 26.9X saving of memory space.

SCNN Algorithm and Hardware Implementation
Fig. 2 shows the 3D/4D point cloud processing sequence

and the chip architecture which contains (1) a 10 x 10 PE array
as central compute engine, (2) a top controller for data flow
management, (3) output accumulation and post processing
modules for SCNN, (4) various memory banks with special
indexing schemes to support the rule book and SCNN
operations. The operation sequence includes coordinate
management for rule book generation and subsequent sparse

convolution, where input point cloud images are divided into
sub-spaces for processing by the chip. The 8-bit reconfigurable
PE array is designed to support both coordinate management
and SCNN for compact chip implementation.

Fig. 3 shows details of the “rule book” flow at the core of
SCNN and hardware implementation. For 3D/4D SCNN, the
input pixels are saved with coordinate (X, Y, Z, T) associated
with feature values eliminating the massive redundant zeros in
the 3D/4D space. In SCNN mode, PE array is configured into
MAC operations processing sparse inputs and kernel values.
As spatial relationship is lost in sparse coding, a special map
representing coordinate relationship is needed, referred as
“Rule Book” [4]. A software implementation of Rule Book
with expensive hash function is unsuitable for small-size ASIC
accelerator due to the overwhelming memory operations for
keyword search and high computation cost of hash functions.
Hence, an efficient hardware friendly “hopping-index rule
book” (HIRB) is developed in this work with multiple hopping
of memory banks through use of data indexes. As shown in
Fig.3, first, sparse inputs are loaded into PE array for MAC
operation and the last 16-bits “end” address is sent to index
memory to provide the stop address for current input. Second,
the core index memory performs loading of multiple weights
of different outputs for the same input until stop address is
reached. Third, for MAC operation, to fetch the weight value
accordingly, instead of duplicating the channel-wise weights,
an 8-bit index indicating mapping between kernel and input
shared by all channels is used so that weights stored in LUT
are fetched according to index, rendering 13.5X~26.9X
memory saving varying with channel number as in Fig. 1.
Fourth, the multiple MAC outputs from the same input point
are stored into different target addresses according to HIRB.
This data flow not only solves the irregular sparse convolution
data mapping, but also provide a general SCNN solution for
variable dimensions, 2D/3D/4D and beyond.

Fig. 4 shows implementation of coordinate manager which
is used to generate the HIRB for building spatial/temporal
relationship among sparse points. Distance information
between 3D/4D points are calculated by the PE array. Only two
points with a distance lower than a threshold are recorded as
neighbors denoted in the HIRB. As a brute-force sequential
search incurs high compute cost, an octree data structure and
data skipping technique are used to accelerate the operations.
With entire space divided into subspace from the octree data
structure and the sparse data stored in incremental orders of X,
Y, Z, T, neighborhood searching is significantly narrowed.
Moreover, partial distances in Z axis or T axis are calculated
first and skipped if the partial distance is larger than a threshold.
Overall, the use of octree data structure and distance skipping
lead to a 12X saving on computing cost reducing coordinate
management overhead from 67.5% to 14.7% of total operation
further enhancing the benefits of SCNN.

Measurement Results
A 65nm test chip was fabricated and measured for the

proposed SCNN accelerator as in Fig. 5. The chip operates
from the nominal 300MHz/1V to 50MHz/0.5V with efficiency

from 0.78TOPS/W to 1.5TOPS/W without considering
sparsity or 7.09TOPS/W to 13.6TOPS/W considering sparsity
for 8-bit SCNN. The coordinate management takes 14.7% of
runtime consuming 35% less power than SCNN. Fig. 5 shows
examples of 3D/4D segmentation and corresponding mIOU
scores for 3D and 4D point cloud images as well as the
accuracy of this work on database ScanNet [5] and Synthia4D
[6] with only 0.1% accuracy loss compared with FP results.
Compared with conventional dense CNN, a speedup of 89.3X
for 3D image or 270.1X for 4D image is achieved. Fig.6 shows
comparison with prior point-cloud works. This is the first
sparse convolution accelerator targeting 3D/4D point-cloud
image/videos. While the raw framerate of 7.2fps is lower than
[2] due to 5X larger CNN model size and 15X smaller PE array
used in this work, a 7.5X higher framerate is achieved when
normalized to similar model size and PE array due to the
significant runtime reduction of sparse convolution. In
addition, this is the only accelerator that also handles 4D point-
cloud videos.

Fig. 1 3D/4D point cloud image recognition tasks, challenges and
contributions from this work.

Fig. 2. Chip top-level architecture and processing sequences of this work.

Fig. 3 Detailed description on SCNN operation, developed hopping-index
rule book (HIRB) and hardware mapping in this work.

Fig. 4. Chip implementation of coordinate management for HIRB
generation and associated speedup techniques.

Fig. 5. Measurement and segmentation results with 3D and 4D examples.

Fig. 6. Die photo and Comparison table.

Acknowledgements
This work was supported in part by NSF under grant number CCF-1846424.

Reference
[1] S. Kim, et al. VLSISymp, 2020 [5] A. Dai, et al. CVPR, 2017
[2] D. Im, et al. VLSISymp, 2021 [6] G. Ros, et al. CVPR, 2016
[3] A. Parashar, et al. ISCA, 2017 [7] Y. Chen, et al. ISSCC, 2016
[4] C. Choy, et al. CVPR, 2019 [8] S. Song, et al. CVPR, 2015

sequential

3D/4D Point Cloud Sparse Convolution for AR/VR

T0 T1 T2

4D Input Point Could Stream
(Synthia Dataset)

3D Input Point Could
(ScanNet Dataset)

Ground Truth Label

 Semantic Segmentation through Convolution
Sparse
Tensor

...

...

Segmentation Result

Pre-
processing

Example of Minkoski CNN for 3D/4D Point Cloud (this work)
3D/4D

pointcloud

Challenges and Contributions from This Work to 3D/4D Segmentation

Mobile Device
with LIDAR

RGB-D
Camera

Fridge

Couch

Dense Format Point Cloud
Sparse Format + HIRB
(This work)

l=8.74m

h=3.02m

voxelize

ad
dr

1
0

ad
dr

3
ad

dr
4

ad
dr

5
ad

dr
6

0 0

17
73

42
6

17
73

42
7

0 0 0...
...

ad
dr

1
ad

dr
2

ad
dr

3
ad

dr
4

ad
dr

5
ad

dr
6

53
52

5
53

52
6

53
52

7...

0

Only Non-zero points are
stored and processed

Zero feature value

...

active point
inactive point

Sequential Search  Octree Search + Subtraction Skip 
(This work)

(1) High Sparsity and High Compute/Memory Demand

(2) High Computing Cost in Coordinate Search and Mapping for Sparse CNN

(3) Large Weight Space and Weight Duplication

ad
dr

1
ad

dr
2

ad
dr

3

ad
dr

27...

ad
dr

28
ad

dr
29

ad
dr

30

ad
dr

54...

ad
dr

55
ad

dr
56

ad
dr

57

ad
dr

81...

Reduced Weight with Index and LUT 
(This work)

1 2 3 27...

in
de

x

La
te

nc
y

(M
 c

yc
le

s)

200

600

1000

1400

12x

octree

W
ei

gh
t M

em
or

y
of

 M
od

el
 (A

.U
.)

Raw Weight 

...
2D

image

64 12832
128 256 256 128

128 64
32

3D/4D
Segmentation

result

2D
Segmentation

result

U-Net

H,W H/2,W/2
H/4,W/4 H/4,W/4 H/2,W/2 H,W H,W,L H/2,W/2,L/2

H/4,W/4,L/4 H/4,W/4,L/4
H/2,W/2,L/2 H,W,L

Mink-UNet

Example of U-Net CNN for 2D Image

4D Segmentation Result

Neighbor? x

Neighbor? √

Too far away? √
skip

Too far away? X
keep searching

ad
dr

1
ad

dr
2

ad
dr

3

ad
dr

81...

LU
T+timeline timeline

addr1
addr28
addr55
addr82

addr244

addr2
addr29
addr56
addr83

addr245

addr1
addr28
addr55
addr82

addr244

addr3
addr30
addr57
addr84

addr246

cycle1 cycle2 cycle3 cycle4 ...

...

13

ch1

ch10

cycle1

1

ch1

ch10

cycle2

5

ch1

ch10

cycle3

...

...

LUT

...

T0 T1 T2

3D

4D

1E+10

1E+4

1E+2

2D
Cfiar10

3D
ScanNet

4D
Synthia

N
or

m
. #

 o
f M

AC
 (l

og
10

)

1 250150
Num of out_channels
(w/ same in_channel)

26.9x

Index + LUT
Raw weight

Fridge

Couch

Minkowski Engine

Input
mem

Input
mem ad

dr
1

ad
dr

2
ad

dr
3

ad
dr

4
ad

dr
5

ad
dr

6

53
52

5
53

52
6

53
52

7...Output
mem

kernel
HIRB

mapping
...

Segmentation result

Sparse
 input

sparse format
dense format 99.9%

97.5%less than
1%

Image Sparsity
Non-zero feature value

13.5x

R
un

 C
yc

le
 (A

.U
.)

3D Image Sparsity
0% 20% 40% 60% 80%

CNN

CNN v.s. SCNN

SCNN winCNN win

SCNNSCNN
(overhead)

(* 40% coord. mgmt. overhead is assumed)

1E+8

1E+6

0

Chip Top-level Architecture for 3D/4D Sparse Convolution

Scan
Chain

Out Mem & Accmulation

Weight LUT

Coordinate
Manager

Sparse
Conv

PE

PE

PE

PE

PE

PE

PE

PE PE

PE

PE

PE

...

...

...

...

Index
Mem

Input
Mem

Input Data Weight Data

+

...

write

re
ad Dual Port Mem

Top Control

in1
in2
in3

in30
in31

Feature 4: Special Indexing for
Input Mem

Sparse input

...

Coord mem

19
10
13
5

16
7

Feature 3: Special Compressed Index
Rule Book

...

(-1,-1,-1) -> 1
(0,-1,-1) -> 2
(1,-1,-1) -> 3
(-1,0,-1) -> 4

(0, 1, 1) -> 26
(1, 1, 1) -> 27

all in/out channels

+y

+x
+z

relative coord index

...

...

x

-

+In

W

s0

s1

coord manager

sparse conv
in1
in2
in3

in30
in31

Kernel Index
1
2
3
4
5
6

...

end2

end3

end1

...

1
2
3

30
31

1
2
4
5
3
5

...

1
2
3
4
5
6

Target addr

end2

end3

end1

...

accumulate into target
output mem address

Kernel
size

ch8 ch7ch9 ch6 ch5 ch3 ch2ch4 ch1 ch01
2

...

ch8 ch7ch9 ch6 ch5 ch3 ch2ch4 ch1 ch0
ch8 ch7ch9 ch6 ch5 ch3 ch2ch4 ch1 ch01

2

...

ch8 ch7ch9 ch6 ch5 ch3 ch2ch4 ch1 ch0ch8 ch7ch9 ch6 ch5 ch3 ch2ch4 ch1 ch01
2

...

ch8 ch7ch9 ch6 ch5 ch3 ch2ch4 ch1 ch0

Weight LUT

Out
channel

Configurable PE

mode

...

...

...

...

...

end1
end2
end3

end30
end31

...

ch9 ch8 ... ch0

...

Out & Accum.

Feature 2: LUT based Compressed WeightFeature 1: Octree Data
structure for coordinate

Processing Sequence

Coordinate
Management Sparse ConvolutionShared Configurable PE Array

15:0
end1
end2

end30
end31

Input Mem

1
2

3
4

Generate HIRB

timeline

14.7% 85.3%
Read input/end Read index + Load Kernel LUT MAC Accumulate&write in target addr

Sparse ConvCoord Manager

...

Read coord Sub write

Reduced from
this work

SCNNCoor.
Mg.

SCNN

Coor.
Mg.

12X
Run Time Example in one SCNN layer

...

Coord Mem
C E

D
B
A

+y

+x

+z
A
B
D
E
C

...

5
4
3
2
1Coordinates are saved in

x,y,z increment order

Sub-block of the entire
space

Read input/end Read index + Load Kernel LUT MAC Accumulate&write in target addrRead coord Sub write

Sparse Tensor:

Sparse Convolution Dataflow with HIRB and Hardware Mapping

PE array

1,1

2,1

3,1

10,
1

1,2

2,2

3,2

10,
2

1,3

2,3

1,4

2,4

1,10

2,10

10,
3

10,
4 10,10

...

...

...

...

...

W
13

ch
1

W
13

ch
2

W
13

ch
3

W
13

ch
4

W
13

ch
5

W
13

ch
10

P1
ch1
P1
ch2
P1
ch3

P1
ch10

...

3,10

ch1
ch2
ch3
ch4
ch5
ch6
ch7
ch8
ch9

ch10
end1

ch1
ch2
ch3
ch4
ch5
ch6
ch7
ch8
ch9

ch10
end2

...

P1P2
12

...

...

13
2

27
13
16
13

Kernel Index
Mem

1
2
3
4
5
6

1
2
4
5
3
5

1
2
3
4
5
6

Target addr
Mem

In
pu

t M
em

W
ei

gh
t

10
*W

Input

ch2 ch3ch1 ch4 ch5 ch7 ch8ch6 ch9 ch101
2

...

ch2 ch3ch1 ch4 ch5 ch7 ch8ch6 ch9 ch10

Kernel
Weight LUT

end2

end3

end1

ch2 ch3ch1 ch4 ch5 ch7 ch8ch6 ch9 ch1027

...

...

...

Same index among channels to reduce mem space

Output Mem

2

1

3

4
1 ch1 ch2 ch10

2 ch1 ch2 ch10

3 ch1 ch2 ch10

N ch1 ch2 ch10

...

...

...

...

... ...

+

...

w
rit

e

read
Dual Port Mem

PE(1,4)
PE(2,4)

ch4

Prev.
addr1
value

Sparse Data Format in this Work

Note: Only non-zero points are stored and processed
Load addr 13,

2,27 for P1

HIRB operation
1

2

3

4

Read input and end address

Loading new point when kernel
index count to end address

Fetch weight according to
kernel index
Accumulate into target output
mem address

Details of SCNN

addr1
addr2

Cycle1: O1 = A1*W(-1,-1,1)
Cycle2: O2 = A2*W(-1,1,1)
Cycle3: O2' = A2*W(-1,1,-1) + O2

A1
A2

O1
O2

+

+

4 ch1 ch2 ch10...
5 ch1 ch2 ch10...
6 ch1 ch2 ch10...
7 ch1 ch2 ch10...

ch2 ch3ch1 ch4 ch5 ch7 ch8ch6 ch9 ch10

... ...

Fetch Weight from LUT based on Index

Acc to output M
em

Load addr 1
for P1

accumulation

Example of 3D Sparse Convolution with HIRB

Num of weights increase exponentially:

2D 3D 4D

3*3 3*3*3 3*3*3*3

B
C
D

A

...

K2
K3

K14

K1

...

K27

...

B’
C’
D’

A’

...

A’ = A * K14 + B * K27
B’ = A * K1 + B * K14

KernelInput Output

A

C
B

D

+y

+x

+z

A’

C’
B’

D’

mapping for A’

+x

+y

+z
Input Kernel Output

+y

+x

+z

...

mapping for B’

 mapping in HIRB

... ...

N is the number of non-zero element,
D is the dimension of the space

Coordinate Management Dataflow for HIRB Generation and Hardware Mapping

Octree Data Structure and Skipping Scheme

If z axis(3D) > threshold
 t axis(4D) > threshold

Coordinate Skipping WorkflowInitialize Coordinate data

Y

d=(x1-x0, y1-y0,z1-z0, t1-t0)Keep loading
new point

Skip the rest of
subtraction

N

PE array

1,1

2,1

3,1

10,1

1,2

2,2

3,2

10,2

1,3

2,3

1,4

2,4

1,10

2,10

10,3 10,4 10,10

...

...

...

...

...

4D Coordinate Mem

t1 z1N/A y1 x1
t2 z2N/A y2 x2
t3 z3N/A y3 x3

1
2
3

tN zNN/A yN xNN
P0
x

P0
y

P0
z

NA

...

P_coord

Q
0 x Q
0 y Q
0 z Q
0 t Q
1 x N
A

Q
_c

oo
rd

Output Mem

3

1 PE(1,1) PE(1,5) PE(8,8)

2 PE(1,1) PE(1,5) PE(8,8)

3 PE(1,1) PE(1,5) PE(8,8)

N PE(1,1) PE(1,5) PE(8,8)

...

...

...

...

... ...

2

1

...

PE(1,1) = Q0(x) - P0(x)
PE(2,2) = Q0(y) - P0(y)
PE(3,3) = Q0(z) – P0(z)

...

PE Coord. Operation

PE(4,4) = Q0(t) – P0(t)

Keep loading cmp coord Before coord mem ends

E

C
D

B

A

PE(8,8) = Q1(t) – P1(t)
PE(7,7) = Q1(z) – P1(z)

A-B = (0,0,1) < (1,1,1) √
A-E = (0,-1,2) > (1,1,1)X

+y

+x

+z

If z axis is out of neighbor layer, the
remaining calculation is not needed

∆z > 1
(Point cloud points are stored in
an order of coordinate increment)

Time ZN/A Y X

w/o skipping w/ skipping

1.8x

Details of Coordinate
manager

1 Load taget coord
P0 = (x0, y0, z0)

Q0 = (x1, y1, z1)

d0 = (x1-x0, y1-y0, z1-z0) = (0, -1, 0) √

Load cmp coord2

4

3 SUB operation in PE

4 Write result into Out Mem

Rule Book Generation
Kernel Index

Mem
Target addr

Mem
11 1

Q1 = (x2, y2, z2)

d1 = (x1-x0, y1-y0, z1-z0) = (0,-2, -2) X

1 1

Relative coord (0,-1,0)->
Index = 11

Save valid point Q0
into target address

13 32 2

... ...

Q0
Q3

Po
w

er
 (A

.U
.)

N/A is reserved for
more dimensions

...

...

C E
DB

A

+y

+x

+z
A
B
D
E
C

...

Octree Data structure for searching

O Q
PN

M

+y

+x

+z
1 3

5 7Block5

M
N
P
Q
O

...
Block3

Searching space is
limited to each block

La
te

nc
y

(M
 c

yc
le

s)

200
600

1000
1400

12x

sequential octree

Power Tracing Power Efficiency w/o
image sparsity

Voltage Scaling

Example of 3D Segmentation Result Example of 4D Segmentation Result
3D segmentation result3D point cloud ground truth

mIOU =
wall Floor Cabinet Bed Chair Sofa Table

Door Window Bookshelf Picture Counter Desk

Curtain Refrigerator Shower curtain Toilet sink Bathtab others

48.976

79.511 96.210 47.210 65.496 85.203 67.388 55.414

51.352 43.182 61.494 24.605 5.301 44.374

54.375 4.528 17.295 46.217 40.928 55.141 34.303

Segmentation result of 3D

Curtain
54.375

Segmentation result of 4D
High scores for chair
segmentation

Quantization Loss

A
cc

ur
ac

y
(%

)

10%

30%

50%
70%

mIOU mAP mACC

FP 8 bit

49%

72%
58%

Accuracy loss
less than 0.1%

A
cc

ur
ac

y
(%

)

10%
30%
50%
70%

mIOU mAP mACC

FP 8 bit

61%
82% 74%

Accuracy loss
less than 0.1%

Quantization result of 3D ScanNet Quantization result of 4D Synthia RUN Time

T0
T1

T2

Building Road Sidewalk Fence Vegetation
90.163 84.135 56.391 33.045 96.579

Pole Car Traffic Sign Pedestrian bicycle
88.254 77.711 47.680 74.308 0.000

Landmarking Traffic light
38.095 52.546

mIOU = 61.576

4D point cloud input

T0

T1
T2

Time(ms)

Po
w

er
 (m

W
) sparse convolution mode

0 10.2 0.4 0.6 0.8

200

100

150 coord manager
mode

PE MAC operation

PE SUB operation

1E+5

1E+2

dense 3D dense 4D

89.3X

270.1X

R
un

 T
im

e
(m

s)

(lo
g 1

0)

1E+3

1E+1
0

1E+4

1E+6

4D segmentation result

0.5 1.10.90.7
Supply Voltage (V)

Ef
fic

ie
nc

y
(T

O
PS

/W
)

0.4

0.8

1.2

1.6

Fr
eq

ue
nc

y
(M

H
z)

300
400

0 0.5 1.10.90.7

Power

Supply Voltage (V)

Frequency

Po
w

er
 (m

W
)

40

200

80

0
100

160

200

500

120

90%

2.048 mm

2 m
m

Coord
Mem

Weight
LUT

Input
Mem

PE Array

C
oo

rd
M

an
ag

er

Sp
ar

se
C

on
v

Out Mem & Accu
Index
Kernel
Mem

Scan
Chain

DCOIO Buffer

ISSCC’16[7] VLSI’20[1] VLSI’21[2] This work
Dimensionality 2D 3D 3D 3D/4D

Process 65 nm 65 nm 65 nm 65 nm
Area (mm2) 3.5 x 3.5 16 16 4.1

Architecture Eyeriss PNN PNN SCNN + Coord Manager
Datatype INT16 INT8 INT8 INT8

PE number 168 -- 8*8*6*4 100
Frequency (MHz) 100 - 250 MHz 150 MHz 200 MHz 300MHz
Supply Voltage(V) 0.82 – 1.17 0.78 – 1.2 0.78 – 1.1 0.5 – 1.2
On chip Memory 181.5 kB 362 kB 364 kB 108.5 kB

CNN Layer
Power Efficiency

(TOPS/W)
0.241 (1V, 16b) 5.62(1V, 8b) 2.59 - 5.65 0.781) – 7.09 @1V

1.51) – 13.6 @0.5V

3D Framerate (fps) -- 44.4 84.8 7.23) (raw fps)
110.64) 638.95)

4D Framerate (fps) -- -- -- 0.696)

1) w/o considering input sparsity, 2) w/ considering input sparsity, 3) Minkowski@ SUN RGB-D,
4) Normalized with number of PEs, 5) Normalized with layers and number of PEs,

Synthia4D (25 3D image per 4D point cloud), 7) excluding IO loading time

2)

2)

6) Minkowski@

