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Abstract - This work presents the first 3D/4D sparse CNN 
(SCNN) accelerator for point cloud image recognition on low 
power devices. A special hopping-index rule book method and 
efficient data search technique were developed to mitigate the 
overhead of coordinate management for SCNN. A 65nm test 
chip for 3D/4D images was demonstrated with 7.09–13.6 
TOPS/W power efficiency and state-of-the-art frame rate.  

Introduction 
Recently efficient hardware support of 3D/4D imaging for 

AR/VR applications has become critically important with 
LIDAR sensors being available for smartphone or tablet.  
Previously, a point cloud-based neural network (PNN) 
processor for simpler hand gesture recognition was developed 
through approximate sampling and grouping in 2D projected 
point-cloud, which may cause uneven distribution of sampled 
points with poor accuracy for large-scale 3D images [1]. A 
more recent work proposed a page-based memory management 
technique to handle non-uniform distribution of point cloud 
using page ID [2]. However, it is still based on dense format, 
hence incurring higher computing cost and data storage. As 
shown in Fig. 1, compared with 2D case, applications in 3D/4D 
space experience exponentially increase of the computation 
workload while also observe dramatic increase of sparsity, e.g.  
97.5% in 3D or 99.9% in 4D cases.  As in Fig. 1, considering 
the computation overhead of index/coordinate management for 
sparse input format, SCNN becomes advantageous at sparsity 
beyond 30%~40%, with benefits increasing with sparsity level.  
Hence, fundamentally, SCNN provides more efficient solution 
for high dimensional sparse images. Although a simulation 
based SCNN was proposed earlier for 2D image, it cannot be 
directly applied to 3D/4D point-cloud images [3]. This work 
presents the first comprehensive solution for SCNN for 3D/4D 
image recognition. As highlighted in Fig. 1, the contributions 
of this work are: (1) A 3D/4D SCNN accelerator based on the 
widely used record-holding Minkowski engine [4] was 
implemented on the silicon achieving state-of-the-art 
performance compared with prior 3D cases [2];  (2) A 
hardware friendly “rule book” solution for SCNN is developed 
leading to a speedup of 89.3X for 3D and 270.1X for 4D cases 
compared with conventional dense CNN; (3) To mitigate 
overhead of the coordinate management for SCNN, a 
hardware-efficient coordinate generation and search solution 
with octree data structure and computation skipping method 
are implemented rendering 12X speedup enhancing the 
benefits of sparse convolution; (4) A look-up table (LUT) 
based weight reuse scheme is utilized to reduce weight 
duplications leading to 26.9X saving of memory space.   

SCNN Algorithm and Hardware Implementation 
Fig. 2 shows the 3D/4D point cloud processing sequence 

and the chip architecture which contains (1) a 10 x 10 PE array 
as central compute engine, (2) a top controller for data flow 
management, (3) output accumulation and post processing 
modules for SCNN, (4) various memory banks with special 
indexing schemes to support the rule book and SCNN 
operations. The operation sequence includes coordinate 
management for rule book generation and subsequent sparse 

convolution, where input point cloud images are divided into 
sub-spaces for processing by the chip.  The 8-bit reconfigurable 
PE array is designed to support both coordinate management 
and SCNN for compact chip implementation.  

Fig. 3 shows details of the “rule book” flow at the core of 
SCNN and hardware implementation. For 3D/4D SCNN, the 
input pixels are saved with coordinate (X, Y, Z, T) associated 
with feature values eliminating the massive redundant zeros in 
the 3D/4D space. In SCNN mode, PE array is configured into 
MAC operations processing sparse inputs and kernel values. 
As spatial relationship is lost in sparse coding, a special map 
representing coordinate relationship is needed, referred as 
“Rule Book” [4]. A software implementation of Rule Book 
with expensive hash function is unsuitable for small-size ASIC 
accelerator due to the overwhelming memory operations for 
keyword search and high computation cost of hash functions. 
Hence, an efficient hardware friendly “hopping-index rule 
book” (HIRB) is developed in this work with multiple hopping 
of memory banks through use of data indexes. As shown in 
Fig.3, first, sparse inputs are loaded into PE array for MAC 
operation and the last 16-bits “end” address is sent to index 
memory to provide the stop address for current input. Second, 
the core index memory performs loading of multiple weights 
of different outputs for the same input until stop address is 
reached. Third, for MAC operation, to fetch the weight value 
accordingly, instead of duplicating the channel-wise weights, 
an 8-bit index indicating mapping between kernel and input 
shared by all channels is used so that weights stored in LUT 
are fetched according to index, rendering 13.5X~26.9X 
memory saving varying with channel number as in Fig. 1. 
Fourth, the multiple MAC outputs from the same input point 
are stored into different target addresses according to HIRB. 
This data flow not only solves the irregular sparse convolution 
data mapping, but also provide a general SCNN solution for 
variable dimensions, 2D/3D/4D and beyond. 

Fig. 4 shows implementation of coordinate manager which 
is used to generate the HIRB for building spatial/temporal 
relationship among sparse points. Distance information 
between 3D/4D points are calculated by the PE array. Only two 
points with a distance lower than a threshold are recorded as 
neighbors denoted in the HIRB.  As a brute-force sequential 
search incurs high compute cost, an octree data structure and 
data skipping technique are used to accelerate the operations. 
With entire space divided into subspace from the octree data 
structure and the sparse data stored in incremental orders of X, 
Y, Z, T, neighborhood searching is significantly narrowed.  
Moreover, partial distances in Z axis or T axis are calculated 
first and skipped if the partial distance is larger than a threshold. 
Overall, the use of octree data structure and distance skipping 
lead to a 12X saving on computing cost reducing coordinate 
management overhead from 67.5% to 14.7% of total operation 
further enhancing the benefits of SCNN. 

Measurement Results 
A 65nm test chip was fabricated and measured for the 

proposed SCNN accelerator as in Fig. 5. The chip operates 
from the nominal 300MHz/1V to 50MHz/0.5V with efficiency 



from 0.78TOPS/W to 1.5TOPS/W without considering 
sparsity or 7.09TOPS/W to 13.6TOPS/W considering sparsity 
for 8-bit SCNN. The coordinate management takes 14.7% of 
runtime consuming 35% less power than SCNN. Fig. 5 shows 
examples of 3D/4D segmentation and corresponding mIOU 
scores for 3D and 4D point cloud images as well as the 
accuracy of this work on database ScanNet [5] and Synthia4D 
[6] with only 0.1% accuracy loss compared with FP results. 
Compared with conventional dense CNN, a speedup of 89.3X 
for 3D image or 270.1X for 4D image is achieved. Fig.6 shows 
comparison with prior point-cloud works. This is the first 
sparse convolution accelerator targeting 3D/4D point-cloud 
image/videos. While the raw framerate of 7.2fps is lower than 
[2] due to 5X larger CNN model size and 15X smaller PE array 
used in this work, a 7.5X higher framerate is achieved when 
normalized to similar model size and PE array due to the 
significant runtime reduction of sparse convolution.  In 
addition, this is the only accelerator that also handles 4D point-
cloud videos.  

  
Fig. 1 3D/4D point cloud image recognition tasks, challenges and 
contributions from this work. 

  
Fig. 2. Chip top-level architecture and processing sequences of this work. 

  
Fig. 3 Detailed description on SCNN operation, developed hopping-index 
rule book (HIRB) and hardware mapping in this work.  

  
Fig. 4. Chip implementation of coordinate management for HIRB 
generation and associated speedup techniques.   

  
Fig. 5. Measurement and segmentation results with 3D and 4D examples.  

 
Fig. 6. Die photo and Comparison table. 
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Supply Voltage(V) 0.82 – 1.17 0.78 – 1.2 0.78 – 1.1 0.5 – 1.2
On chip Memory 181.5 kB 362 kB 364 kB 108.5 kB

CNN Layer 
Power Efficiency

(TOPS/W)
0.241 (1V, 16b) 5.62(1V, 8b) 2.59 - 5.65 0.781) – 7.09 @1V

1.51) – 13.6 @0.5V

3D Framerate (fps) -- 44.4 84.8 7.23) (raw fps)
110.64) 638.95) 

4D Framerate (fps) -- -- -- 0.696)

1) w/o considering input sparsity,    2) w/ considering input sparsity,   3) Minkowski@ SUN RGB-D,  
4) Normalized with number of PEs, 5) Normalized with layers and number of PEs,

Synthia4D (25 3D image per 4D point cloud ), 7) excluding IO loading time

2 ) 

2 ) 

6) Minkowski@


