
44  •  2024 IEEE International Solid-State Circuits Conference

ISSCC 2024 / SESSION 2 / PROCESSORS AND COMMUNICATION SOCS / 2.5

2.5    A 28nm Physical-Based Ray-Tracing Rendering Processor for  
        Photorealistic Augmented Reality with Inverse Rendering and  
        Background Clustering for Mobile Devices 

 
Shiyu Guo1, Sachin Sapatnekar2, Jie Gu1 
 
1Northwestern University, Evanston, IL 
2University of Minnesota, Minneapolis, MN 
 
As the applications of Augmented Reality (AR) or Virtual Reality (VR) expand rapidly with 
the growing demands on enhanced visual realism, photorealistic image generation and 
insertion has become an essential feature for the emerging AR applications providing 
real-time workplace/household visual assistance. Physical Based Ray-Tracing (PBRT) is 
often used where synthesized images are generated by simulating the real environment 
and tracing the light transportation to achieve photorealistic effects, such as reflection, 
refraction, soft shadows, etc. PBRT is widely used in product design, medical 
visualization, video games and movie effects. To enable photorealistic rendering, there 
is a strong demand to support ray-tracing (RT) on mobile devices [1]. However, the 
challenges are: (1) unstructured memory access pattern and complex control flow lead 
to scheduling difficulty; (2) high memory requirements exhaust the limited SRAM space 
on edge devices; (3) low error tolerance requires high precision for computing; (4) 
complex computations, such as division and square root, require significant computing 
resources for the edge devices. As a result, common rendering engines such as Apple 
ARKit, OpenGL, are mainly based on the lower cost rasterization rendering technique. 
Unfortunately, rasterization rendering fails to produce photorealistic synthesis as shown 
in Fig. 2.5.1. Few ASICs have been fabricated so far as a mobile photorealistic rendering 
solution solution, however, they may not support RT [2], or may suffer from low 
efficiency [3]. This work has developed a ray-tracing processor, which also supports 
inverse rendering (IR) for background extraction [4]. The key features of this work 
include: (1) an ASIC rendering processor that embeds an end-to-end PBRT solution with 
IR for AR on mobile devices, (2) a reconfigurable mixed-precision PE design supporting 
diverse computing tasks for both IR and RT, (3) background clustered Field of View 
(FOV)-focused 3D construction reducing conventional background scene complexity 
from O(nlogn) to O(1), (4) scalable partitioning scheme for complex 3D objects, with an 
average of 13× speed up on test scenes, (5) use of Global RT Scheduler (GRTS) and 
Global Memory Access Controller (GMAC) to overcome the challenges of irregular 
memory access pattern and varied PE run-time with overall 684× speedup compared 
with the baseline design. The 28nm test chip achieves 3.95-28.8× higher rendering 
efficiency compared with existing ASIC solutions, enabling real-time PBRT rendering on 
mobile edge devices. 
 
Figure 2.5.2 illustrates the computing flow of this work. In the first step, a 2D image 
captured by a regular camera is sent through a CNN-based physical decoder and encoder 
for IR to obtain the background physical attributes, including four major background 
physical attribute (PA) maps: albedo, normal, lighting and depth maps. To save the 
compressed PA map on chip, a background clustering scheme is developed based on 
the similarity of neighbor pixel values of the background map by applying an average 
filter. The result PA maps are stored in a Physical Attributes MEM (PAMEM). Each PE 
accessing the PAMEM passes through the Per Pixel Compression Decoder (PPCD) and 
the Unified Address Converter (UAC) to fetch the corresponding background physical 
attributes parameter based on the PE task ID from the GRTS scheme. In this way, 145-
4800× of memory saving for different backgrounds is achieved with 0.06% hardware 
overhead compared with the baseline design. In the second step, the IR result is used 
for Camera FOV-focused 3D construction. As shown in Fig. 2.5.2, the background scene 
is constructed only for the 3D space covered by the user camera FOV. In this way, the 
background scene complexity is reduced from O(nlogn) to O(1) compared with 
conventional RT solutions (n refers to the number of geometric primitives in the scene) 
[5]. In the last step, PBRT rendering is implemented to render 3D virtual objects with an 
average of 76% RT workload reduction compared with the conventional RT solutions as 
shown in Fig. 2.5.2.  
 
Figure 2.5.3 shows the top-level architecture of this design. To increase the utilization of 
the PE and address the irregular access pattern to memory, an 8×6 PE array is 
implemented with a GRTS and a GMAC. To support computation for both IR and RT 
modes, a reconfigurable mixed-precision PE is developed as shown in Fig. 2.5.3. Each 
PE contains a local PE Controller, clock-gating control, a computing core which supports 
8b, 16b and 32b MAC, 64b division and 64b square root operations and a local OBJMEM. 
Clock gating disables excessive computing units and local MEM in IR and RT modes 
with 32% power saving. In RT mode, a scalable 3D model partitioning flow shown in 
Fig. 2.5.3 is implemented. In contrast to the conventional solution that builds the BBOX 
acceleration [6], this work introduces two types of object Bounding Box (BBOX): Empty 
BBOX (EBBOX) and Target BBOX (TBBOX). EBBOX is only used for light transportation 
estimation and shadow purposes, while the shading computation is skipped. TBBOX 

includes a sub-group of user-defined objects inside. After the BBOX Intersection 
Evaluator (BBIE) detects intersection with TBBOX, the Triangle Mesh Intersection 
Evaluator (TIE) computes the triangle intersection, and the result is sent for shading 
computing. With this scheme, complex 3D objects could be segmented for RT processing 
without losing the ray-tracing effect. As a result, a linear scalability in RT rendering time 
and an average of 13× speed up with only 5.6% memory overhead is achieved compared 
with the baseline design. 
 
Figure 2.5.4 shows on-chip data movement in IR and RT modes. In IR inference mode, 
double input and weight stationary are supported. In RT mode, multiple PEs have 
memory access conflicts, as shown in Fig. 2.5.4. To address the global PAMEM access 
conflict and varied PE run-time, GRTS and GMAC are implemented. With the RT Token 
Checker (RTTC) checking one PE status every clock cycle, GRTS and GMAC process the 
RTTC selected PE request individually while GRTS refreshes the checked PE status if the 
computation is done. In this way, we achieve 42.8× overall speed up from GRTS and 
16× overall speed up from GMAC compared with the baseline design by introducing only 
2.8% and 0.6% hardware cost. The detailed RT shading algorithm to compute the color 
of each pixel is also shown in Fig. 2.5.4. RT shading demands complex operations, such 
as sqrt and division. In this work, a PE Compute Unit (PCU) is implemented inside each 
PE. As shown in Fig. 2.5.4, PAMEM, OBJMEM data are sent to PCU for shading 
computation. PCU’s output is stored in a local shading register for lighting effect 
accumulation. By implementing a PCU in each PE, all the RT computation can be finished 
individually inside each PE.  
 
Figure 2.5.5 shows the total runtime breakdown for the IR-RT flow and demonstrates 
the background clustering scheme by showing the background reflection is able to light 
up the object properly by using clustered PA map compared with the baseline design 
with the detailed background PA map. Four virtual object insertion test cases with teacup, 
Utah teapot, Stanford bunny and four spheres are demonstrated in Fig. 2.5.5 using the 
IR-RT rendering scheme. Different materials, such as glass, mirror and ivory are 
displayed with photorealistic rendering effects of reflection, refraction and shadow. The 
IR-RT flow achieves an average of 26fps for real-time RT rendering with complex 3D 
objects. Figure 2.5.5 also showed the 3D rendering case without IR with a predefined 
3D background. Four spheres with different materials are inserted. Photorealistic effects 
of refraction, reflection and object shadow are properly rendered to the image with 78fps, 
meeting the requirement of real-time AR applications. 
 
A 28nm test chip was fabricated with 0.9V nominal supply voltage. Figure 2.5.6 shows 
more measurement and comparison results. Power and frequency scaling are shown in 
Fig. 2.5.6 with a supply voltage from 0.6V to 0.9V. 500fps/W and 1418fps/W power 
efficiency has been achieved at 0.9V for IR and RT modes, respectively. The comparison 
table with prior art is provided in Fig. 2.5.6. This work implements IR-RT-based rendering 
solutions, achieving 28.8× and 3.95× higher ray-tracing rendering efficiency compared 
with prior ASIC designs, enabling real-time PBRT on mobile edge devices. Figure 2.5.7 
shows the die photo and chip specifications. 
 
Acknowledgement: 
This work is supported in part by AFRL under the DARPA RTML program under award 
FA8650-20-2-7009 and NSF grant CCF-2008906.  
 
References: 
[1] Y. Deng et al., “Toward Real-Time Ray Tracing: A Survey On Hardware Acceleration 
and Microarchitecture Techniques,” ACM Computing Surveys, vol. 50, no. 4, pp. 1–41, 
2017.  
[2] D. Han et al., “MetaVRain: A 133mW Real-Time Hyper-Realistic 3D-NeRF Processor 
with 1D-2D Hybrid-Neural Engines for Metaverse on Mobile Devices,” ISSCC, 2023.  
[3] H.-Y. Kim et al., “A Reconfigurable SIMT Processor for Mobile Ray Tracing With 
Contention Reduction in Shared Memory,” IEEE TCAS-I, vol. 60, no. 4, pp. 938–950, 
2013. 
[4] Z. Li et al., “Openrooms: An Open Framework For Photorealistic Indoor Scene 
Datasets,” IEEE CVPR, pp. 7190–7199, 2021.  
[5] S. G. Parker et al., “OptiX: A General Purpose Ray Tracing Engine,” ACM Trans. 
Graph., vol. 29, no. 4, p. 66:1-66:13, 2010. 
[6] I. Wald, “On fast Construction of SAH-based Bounding Volume Hierarchies,” IEEE 
Symp. on Interactive Ray Tracing, pp. 33–40, 2007.

979-8-3503-0620-0/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ol

id
-S

ta
te

 C
irc

ui
ts

 C
on

fe
re

nc
e 

(I
SS

C
C

) |
 9

79
-8

-3
50

3-
06

20
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IS
SC

C
49

65
7.

20
24

.1
04

54
39

4

Authorized licensed use limited to: Northwestern University. Downloaded on April 25,2024 at 15:43:19 UTC from IEEE Xplore.  Restrictions apply. 



45  

ISSCC 2024 / February 19, 2024 / 3:35 PM

DIGEST OF TECHNICAL PAPERS  •

Figure 2.5.1: Overview of the photorealistic object insertion flow for AR applications. 
Limitation of rasterization. Challenges for ray-tracing rendering and contributions of 
this work.

Figure 2.5.2: Inverse Rendering (IR) and Ray Tracing (RT) rendering flow with 
background physical attributes and camera field of view (FOV)-focused 3D 
construction. 

Figure 2.5.3: Top-level chip architecture of this design. Reconfigurable mixed-
precision PE architecture and scalable 3D model partitioning scheme. BBOX 
intersection evaluator and triangle mesh intersection evaluator.

Figure 2.5.4: Global Ray-Tracing Scheduler (GRTS) and Global Mem Access 
Controller (GMAC) scheme and benefits. Ray tracing object shading computation in 
each PE.

Figure 2.5.5: Inverse rendering quantization accuracy loss. Examples of virtual object 
insertion with IR-RT flow and 3D rendering for AR object insertion. Figure 2.5.6: Measurement results and comparison table with prior work.

2

Authorized licensed use limited to: Northwestern University. Downloaded on April 25,2024 at 15:43:19 UTC from IEEE Xplore.  Restrictions apply. 



•  2024 IEEE International Solid-State Circuits Conference

ISSCC 2024 PAPER CONTINUATIONS

979-8-3503-0620-0/24/$31.00 ©2024 IEEE

Figure 2.5.7: Die micrograph.

Authorized licensed use limited to: Northwestern University. Downloaded on April 25,2024 at 15:43:19 UTC from IEEE Xplore.  Restrictions apply. 


