ISSCC 2024 / SESSION 2 / PROCESSORS AND COMMUNICATION SoCs /2.5

2.5 A 28nm Physical-Based Ray-Tracing Rendering Processor for
Photorealistic Augmented Reality with Inverse Rendering and
Background Clustering for Mobile Devices

Shiyu Guo', Sachin Sapatnekar?, Jie Gu'

"Northwestern University, Evanston, IL
2University of Minnesota, Minneapolis, MN

As the applications of Augmented Reality (AR) or Virtual Reality (VR) expand rapidly with
mthe growing demands on enhanced visual realism, photorealistic image generation and
vlnsertlon has become an essential feature for the emerging AR applications providing
oreal -time workplace/household visual assistance. Physical Based Ray-Tracing (PBRT) is
<roften used where synthesized images are generated by simulating the real environment
oand tracing the light transportation to achieve photorealistic effects, such as reflection,
z\refracnon soft shadows, etc. PBRT is widely used in product design, medical
\owsuallzatlon video games and movie effects. To enable photorealistic rendering, there
Jis a strong demand to support ray-tracing (RT) on mobile devices [1]. However, the
Schallenges are: (1) unstructured memory access pattern and complex control flow lead
Zto scheduling difficulty; (2) high memory requirements exhaust the limited SRAM space
Son edge devices; (3) low error tolerance requires high precision for computing; (4)
= complex computations, such as division and square root, require significant computing
=resources for the edge devices. As a result, common rendering engines such as Apple
5ARKit, OpenGL, are mainly based on the lower cost rasterization rendering technique.
A Unfortunately, rasterization rendering fails to produce photorealistic synthesis as shown
min Fig. 2.5.1. Few ASICs have been fabricated so far as a mobile photorealistic rendering
msolution solution, however, they may not support RT [2], or may suffer from low
S efficiency [3]. This work has developed a ray-tracing processor, which also supports
Sinverse rendering (IR) for background extraction [4]. The key features of this work
include: (1) an ASIC rendering processor that embeds an end-to-end PBRT solution with
<IR for AR on mobile devices, (2) a reconfigurable mixed-precision PE design supporting
édiverse computing tasks for both IR and RT, (3) background clustered Field of View
g(FOV)-focused 3D construction reducing conventional background scene complexity
Sfrom O(nlogn) to O(1), (4) scalable partitioning scheme for complex 3D objects, with an
@average of 13x speed up on test scenes, (5) use of Global RT Scheduler (GRTS) and
SGlobal Memory Access Controller (GMAC) to overcome the challenges of irregular
omemory access pattern and varied PE run-time with overall 684x speedup compared
mW|th the baseline design. The 28nm test chip achieves 3.95-28.8x higher rendering
mefflmency compared with existing ASIC solutions, enabling real-time PBRT rendering on
'amobile edge devices.

oFlgure 2.5.2 illustrates the computing flow of this work. In the first step, a 2D image
mcaptured by a regular camera is sent through a CNN-based physical decoder and encoder
for IR to obtain the background physical attributes, including four major background
%physical attribute (PA) maps: albedo, normal, lighting and depth maps. To save the
Bcompressed PA map on chip, a background clustering scheme is developed based on
Sthe similarity of neighbor pixel values of the background map by applying an average
gfilter. The result PA maps are stored in a Physical Attributes MEM (PAMEM). Each PE
‘Saccessing the PAMEM passes through the Per Pixel Compression Decoder (PPCD) and
Sthe Unified Address Converter (UAC) to fetch the corresponding background physical
wattributes parameter based on the PE task ID from the GRTS scheme. In this way, 145-
£4800x of memory saving for different backgrounds is achieved with 0.06% hardware
soverhead compared with the baseline design. In the second step, the IR result is used
gfor Camera FOV-focused 3D construction. As shown in Fig. 2.5.2, the background scene
—is constructed only for the 3D space covered by the user camera FOV. In this way, the
‘Sbackground scene complexity is reduced from O(nlogn) to O(1) compared with
§conventional RT solutions (n refers to the number of geometric primitives in the scene)
8[5]. In the last step, PBRT rendering is implemented to render 3D virtual objects with an
iaverage of 76% RT workload reduction compared with the conventional RT solutions as
Eshown in Fig. 2.5.2.

§Figure 2.5.3 shows the top-level architecture of this design. To increase the utilization of
“the PE and address the irregular access pattern to memory, an 8x6 PE array is
implemented with a GRTS and a GMAC. To support computation for both IR and RT
modes, a reconfigurable mixed-precision PE is developed as shown in Fig. 2.5.3. Each
PE contains a local PE Controller, clock-gating control, a computing core which supports
8h, 16b and 32b MAC, 64b division and 64b square root operations and a local OBJMEM.
Clock gating disables excessive computing units and local MEM in IR and RT modes
with 32% power saving. In RT mode, a scalable 3D model partitioning flow shown in
Fig. 2.5.3 is implemented. In contrast to the conventional solution that builds the BBOX
acceleration [6], this work introduces two types of object Bounding Box (BBOX): Empty
BBOX (EBBOX) and Target BBOX (TBBOX). EBBOX is only used for light transportation
estimation and shadow purposes, while the shading computation is skipped. TBBOX

includes a sub-group of user-defined objects inside. After the BBOX Intersection
Evaluator (BBIE) detects intersection with TBBOX, the Triangle Mesh Intersection
Evaluator (TIE) computes the triangle intersection, and the result is sent for shading
computing. With this scheme, complex 3D objects could be segmented for RT processing
without losing the ray-tracing effect. As a result, a linear scalability in RT rendering time
and an average of 13x speed up with only 5.6% memory overhead is achieved compared
with the baseline design.

Figure 2.5.4 shows on-chip data movement in IR and RT modes. In IR inference mode,
double input and weight stationary are supported. In RT mode, multiple PEs have
memory access conflicts, as shown in Fig. 2.5.4. To address the global PAMEM access
conflict and varied PE run-time, GRTS and GMAC are implemented. With the RT Token
Checker (RTTC) checking one PE status every clock cycle, GRTS and GMAC process the
RTTC selected PE request individually while GRTS refreshes the checked PE status if the
computation is done. In this way, we achieve 42.8x overall speed up from GRTS and
16x overall speed up from GMAC compared with the baseline design by introducing only
2.8% and 0.6% hardware cost. The detailed RT shading algorithm to compute the color
of each pixel is also shown in Fig. 2.5.4. RT shading demands complex operations, such
as sqrt and division. In this work, a PE Compute Unit (PCU) is implemented inside each
PE. As shown in Fig. 2.5.4, PAMEM, OBJMEM data are sent to PCU for shading
computation. PCU’s output is stored in a local shading register for lighting effect
accumulation. By implementing a PCU in each PE, all the RT computation can be finished
individually inside each PE.

Figure 2.5.5 shows the total runtime breakdown for the IR-RT flow and demonstrates
the background clustering scheme by showing the background reflection is able to light
up the object properly by using clustered PA map compared with the baseline design
with the detailed background PA map. Four virtual object insertion test cases with teacup,
Utah teapot, Stanford bunny and four spheres are demonstrated in Fig. 2.5.5 using the
IR-RT rendering scheme. Different materials, such as glass, mirror and ivory are
displayed with photorealistic rendering effects of reflection, refraction and shadow. The
IR-RT flow achieves an average of 26fps for real-time RT rendering with complex 3D
objects. Figure 2.5.5 also showed the 3D rendering case without IR with a predefined
3D background. Four spheres with different materials are inserted. Photorealistic effects
of refraction, reflection and object shadow are properly rendered to the image with 78fps,
meeting the requirement of real-time AR applications.

A 28nm test chip was fabricated with 0.9V nominal supply voltage. Figure 2.5.6 shows
more measurement and comparison results. Power and frequency scaling are shown in
Fig. 2.5.6 with a supply voltage from 0.6V to 0.9V. 500fps/W and 1418fps/W power
efficiency has been achieved at 0.9V for IR and RT modes, respectively. The comparison
table with prior art is provided in Fig. 2.5.6. This work implements IR-RT-based rendering
solutions, achieving 28.8x and 3.95x higher ray-tracing rendering efficiency compared
with prior ASIC designs, enabling real-time PBRT on mobile edge devices. Figure 2.5.7
shows the die photo and chip specifications.

Acknowledgement:
This work is supported in part by AFRL under the DARPA RTML program under award
FA8650-20-2-7009 and NSF grant CCF-2008906.

References:

[1]Y. Deng et al., “Toward Real-Time Ray Tracing: A Survey On Hardware Acceleration
and Microarchitecture Techniques,” ACM Computing Surveys, vol. 50, no. 4, pp. 1-41,
2017.

[2] D. Han et al., “MetaVRain: A 133mW Real-Time Hyper-Realistic 3D-NeRF Processor
with 1D-2D Hybrid-Neural Engines for Metaverse on Mobile Devices,” ISSCC, 2023.

[3] H.-Y. Kim et al., “A Reconfigurable SIMT Processor for Mobile Ray Tracing With
Contention Reduction in Shared Memory,” IEEE TCAS-I, vol. 60, no. 4, pp. 938-950,
2013.

[4] Z. Li et al., “Openrooms: An Open Framework For Photorealistic Indoor Scene
Datasets,” IEEE CVPR, pp. 7190-7199, 2021.

[5] S. G. Parker et al., “OptiX: A General Purpose Ray Tracing Engine,” ACM Trans.
Graph., vol. 29, no. 4, p. 66:1-66:13, 2010.

[6] I. Wald, “On fast Construction of SAH-based Bounding Volume Hierarchies,” /EEE
Symp. on Interactive Ray Tracing, pp. 33—40, 2007.

AUtnorized Nicensed use mited to; Northwestern UnlverS|Ey. Downloaded on Kpl’l 25,2'021 A 15:43.10 UTC from IEEE Xp Ore. Restrictions apply.

44 < 2024 IEEE International Solid-State Circuits Conference

979-8-3503-0620-0/24/$31.00 ©2024 |EEE

ISSCC 2024 / February 19, 2024 / 3:35 PM

Step1: Inverse Rendering with Camera Input Step2: FOV-Focused 3D Construction

Inverse Rendering T — — Physically-Based Inverse Rendering Inverse Render Result Phlsical Amit:::e: :IEBM (PAMEM) Inverse Rendering (IR) Result)
Algorithon] Rapas Background Clustering Ll Lighting 4 Background Physl:al
by Neural Network JGPU Server e Jasrrscn | - © ® e it . Information
Real ook ® ® ® . | Background Surface Normal Vector_Construction 2 1
scene Heatser [t Tolgm ™0 | 0 | =8 7 O } " i / ‘
o) Virtual Object Insersion Neal o] @ B B b ® e per el Compression e Adr, . <}
N N - £ P— = 2 3 cthold Skipper- & Decoder (P “ Converte (UAC)
Eﬂl Ray-Tracing(RT) Rending - |ForTdne] © © ® !j;' 5|7 A/ ol
; ssceasia)] oww ®)) =2 g
Encoder Decoder Processing — s A\ §
Asic sz | Rvrecne| ©] 2] \ U evm Map
Platform™ | yerse Rendering Mode Render Mode Thiswork | _1R_RT © © From Ofnlogn)to
. " A v 8 0(1) 3D Construction °,
Benefits of Ray-Tracing Renderlng for AR and Challenges [o]1] e 3 User-Defined
2DInput P! sical Background Physical E View
e . Cediar Decodér e Inserted Object
| Limitations of Rasterization @ Limited On- @ Random Memory Access @Dinverse Rendering and 3D Scene Construction
| Rasterization Result Ray-Tracing Result I Chip Memory Confli Flow for Ray-Tracing rendering for Edge Device Step3: Ray-Tracing Rendering
| = 087 MEm | With 3.9X ~ 28.8X Power Efficiency Over Existing . : .
| I common 3D Object size ASIC Solutions Ray-Tracing Rendering Algorithm
14 -+ Pi
| ! Clustered FOV-focused 3D @intersect Computation . Result: Pixel Value Ray BBOX Intersect OB Intersect
| : _ Construction Reducing Scene Complexity from ing ol s A RG.B) Tioht Source| | Generation =
2 (7 O(nlogn) to O(1) T - |[Closest
| i X - 12 ¥ =2 ® 7 (Per PE) Scene Intersect Miss 2
| Reflection: Lack information 2 il A (@ 3D Scalable Partitioning Scheme For Average e J
| of Other Background Object | @ AN 13X Speed Up 1ipenection (DRay
Rasterization Result -Tracis | eeod)] i i i
| o] Ray-Tracing Result | s ‘Lm,»sma) s04) On-chip SRAM (@) GRTS and GMAC Control Scheme for memory ﬁzﬂiﬂ"“?"m L 62y - Result {§ Shading Iterative Traversal
| 1@ Demands of Complex (8) Power and Run 2¢cess confliction L Dltusalighiny sl tion Ray-Tracing Computing Flow
pecular Lighting
: IComputation Time on Edge Dewce® Reconhgurahle Mix-precision PE for IR /RT ‘Amblent Lighting - Background Scene
| \ | "Ray Ganaration ir(0).= 2 +.¢d. i Time e 'g Task = Conventional RT Workload,,, Memory Requirement
| Refraction: Lack the ability to handle | Intersection " e e HE) = . 2 RY W°’k'°3d (This Work) R o
L _ transparency with rasterization | Reflection . Real-Time Ray- = @ ol B 5 YR) e
_____________ " oL b & 2 H & Intersecion® 2978
(@ High Precision Requirement Ushting a'= 2y evice Remlrersént’ 3 L £ u; | = Constructed 3D copy, H i
Refraction ;sinf, = ;sind, 5 2 = VY cameSMGE Background Scene Generate 2 & Sotteneck: Complex
saoox Y | @ Real|Time FBS. 88 Loy 4 i 077/ — = Background Mesh
(, LY)),“"7’“'«*"” pixelCamera, = (2x PivelSereen, ~) IARXWnG) o piel, 405 et /
L Enable Real-Time Physical Based Ray- PiselCamera, = (1 -2 x Piselscreen,) x tan(3) “ TrmageWidth skl B % e
High Precision (32B) Low/Precision (8b) 1, (p, wy) = L,(p,m)+ [F.w0,00Li(pw)costi] du Tracing Render for Edge Device ImageAspectRatto GAR) = megewidth PixelScreen, 2 -1 nerecion 0% Sponza Conf. Cornel
False Misses Causing Visible Holes " 2 f SO eAspectRatio (1AR) = FLuCCrr: * Tmage elght poverSpomaCon.—Came

Figure 2.5.1: Overview of the photorealistic object insertion flow for AR applications. Figure 2.5.2: Inverse Rendering (IR) and Ray Tracing (RT) rendering flow with
Limitation of rasterization. Challenges for ray-tracing rendering and contributions of background physical attributes and camera field of view (FOV)-focused 3D
this work. construction.

op-level Architecture E Mixed Computm Mode Configuration Data Flow for IR and RT Mode Memory Confliction

Seccofipiable

‘._ | : o e for U;:Mmmmmm oI IR Inference Mode RT Rendering Mode RT Mode Status
i oBmEm o oot
g @l @ E E @ E =y a 52 Oparitions (aKe) N ’; T Input Data Global RT Scheduler 1 (1 [[[[
2 | ouble Input Increase ;
12(| & 32yt GEEEN o) GMAC GRTS] [=]w]=]
HEfi=l 5 S [P | & i i [Aooro]: - flasklo] B i
zl5]2 | ;@:@’ ADDR1 || - . . . " g M
2zl 2 Pec input Disable & Clock 3 B|el@ DL LR Cle
£5|12 o RG] | 1} "enietorrown & e g |i [3leBlETICILILIC|d
2188 . avingin IR INF Mode f I 28]
sllefl = \. 4 m [l
a2l E i T with Background Cusering b | e S CICICECIE
ENE i is Ao Bouncing[rtange esh Grous|[h| @[£ s |
Nl B et z j : DLGNLIG
° B et g | z

[
FEL TSITE
Multiple PEs Accessing The Same MEM
Multiple PEs in IDLE Stage
] [Taskly, 2] |Execution PE Finished PE
(Computing) (OMEM Access)

Execution PE
[] e (IMEM Access)

Il GRTS and GMAC Benefit | RT Object Shading in PE

Background Clustering
Scheme HW overhead

Model Partitioning Scheme a

" Scalable 3D Model Partitioning Flow,

Total i : 34834

Shading Result

- RS | ¢
Total T# : 69451 Cast-Ray L/BBOX Intersection sy j!n Partition |[EgEOK. lznspan (sp| £ peerector
5 Gerpdl 1 evahation | | check H ek
3 G d ‘"‘“"""‘ﬂ"\/ ntrsenton 68 H . T ——
i N Computation Seaiveton H R Shading Eifect
| skip internal = 2 = { Object Shading += Ambient Lighting + Diffuse Lighting + Specular Lighti
i) ot BEO ntersecion Evalustor (BBIE 3D Model Runtime Comparison ion A o T S A y
5] | c max(s.) forScalae Schame Light Calor Backround Albedo Ind o o ndex -
g N § Runtime =
8 ;om;;u:ﬂonfm Keep shadow Dmhm/ Scalabilty [= = = k=1~ eta x eta x (1.- cos(i) x cos(il)
3| TanERy with Increased [l |um Scttte 1
H 5 H Object OBIMEM
H E | complexity I YT —
Zos
i 3 Clock Rotate Register
Triangie Mesh 3 = S, 063 Diffuse Color
Sounding fox oy Trangle Inersecton H 7E) Fush - OBy Specuirn
§ !E_ . =
2
E, ene Triangle
° del ot Aecomae Wi |
sty % " e PR of o St w7
] n: Glabal Mem Access Clrl (GMAC)

Figure 2.5.3: Top-level chip architecture of this desmn Reconllgurahle mixed- Figure 2.5.4: Global Ray-Tracing Scheduler (GRTS) and Global Mem Access
precision PE architecture and scalable 3D model partitioning scheme. BBOX Controller (GMAC) scheme and benefits. Ray tracing object shading computation in
intersection evaluator and triangle mesh intersection evaluator. each PE.

Runtime Breakdown and Inverse Rendering Result

______ Efficiency over CPU/GPU | Efficiency over prior ASICs

Runtime Breakdown Inverse Render INF Average *Running the same IR-RT algorithm *Running Different ing algorithm Running Different Rendering algorithm
S Quantization Accuracy Loss __800) = EBOU --------------------
100% [9 1 v s _
IR Iﬁ Quanhzatlon 0ss > | 0.4% 6.4% | i 8.9% 0.9%| & EGDO =
8 : g & E
§ EAOO a0 28.8X 5
Evalute b | S S H
Background Cluster rendering Result 2 £ £ &
SSIM =0 e E SSIM =0 U % ‘ LT w o
H =0 | WVIDIA GTX ntel 7. ™ This Recont T isscoanta | i, Becont. ™ i55cc23 2] This Work
| L | Voltage Scali Comparison Table
O “ighting Albedo _Normal _Depth s en T P
i requ V.S,
Clustered, Baseline. Map _ Map _ Map __ Map ik RgT e Reconf. SIMT[3] [oMvioaori | 1ssccz3ial This Work
Ray-Tracing Rendering Case Demonstration g 200 200MHz Process (nm) %0 16 28 28
Virtual Object Insertlon Cases 3D Rendering for AR Insertion < Area (mm?) 16 an 2025 356
2 100 142MHz Architecture SIMT SIMT Systolic Array Systolic Array
[BVH-Acceleration i
1 5 - . 3D model DNN Inverse Rendering
Physically-based AR Object ;,’. , Solutions +Ray-Tracing | Nvidia Optix Rondaring Ry TiaIRg Prodsss
Insertion “ "05 06 07 08 09 Supply Vdd 1.2v 1.0 0.6-0.95V 0.9v
PDWZ:\':FC(()XL@ Clock Frequency | oMbz~ 1480MHz | 50MHz - 100 MHz 142MHz - 200MHz
——a—IR Mode RT Mode SRAM 19.3KB 2MB 2MB 296KB
Pre-Defined Background = Bit Precision FP32 FP32, FP64 FP8-FP16 INT8-INT64
Scene 8 % L 55mWe, 221mW @ 250W @ 310mW @ 40mW @ 200MHz, 0.9V (IR)
< Frequency/Supply | 200MHz, 1.2V | 1480MHz, 1V 100MHz, 0.7V [s5mW @ 142MHz, 0.9V (RT)
+: v
§ i 40mW| Throughput (FPS) 6% 0.75 32-118 13-38
Peak Throughput 1418 (RT only)
o . 0 . 27.38*% 0.003 199 (@0.7V)
Stanford Bunny Insert Spheres with Different Materials 05 06 Vo'i U'B(V;'g EITE cncVAEES /W) 790 (IR and RT)
'oltage *Converted from Mray/s
Figure 2.5.5: Inverse rendering quantization accuracy loss. Examples of virtual object
insertion with IR-RT flow and 3D rendering for AR object insertion. Figure 2.5.6: Measurement results and comparison table with prior work.
AUthorized licensed use limited to: Northwestern University. bownloaded on April 25, at 15.43: rom plore. Restrictions apply.

DIGEST OF TECHNICAL PAPERS « 45

ISSCC 2024 PAPER CONTINUATIONS

Tt %{ Process 28nm CMOS
: Area (mm?2) 3.56mm?
“ "lo &l SRAM 296KB
af ' Supply Vdd 0.6~0.9V
= LJ R o
1 |top s = Bit Precision INTS,16,32,64
L |ctrl frri (R
| 8x6PEAmay | = (g Madie 200MHz
e a Frequency
- O] = |E]
ol N Max BT 148MH
i 2 N Frequency &
s i IR Power 40mW @ 0.9V
g : § ol RT Power 55mW @ 0.9V
L= ‘L IR Efficiency 500
= OMEM = (FPS/W)
L] —
= T ap TSt RT Efficiency
ST)mm. (FPS/W) 1418
Figure 2.5.7: Die micrograph.
Authorized licensed use limited to: Northwestern University. Downloaded on Apri 0 al CH rom plore. estrictions apply.

e 2024 IEEE International Solid-State Circuits Conference

979-8-3503-0620-0/24/$31.00 ©2024 |EEE

