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As the applications of Augmented Reality (AR) or Virtual Reality (VR) expand rapidly with
mthe growing demands on enhanced visual realism, photorealistic image generation and
vlnsertlon has become an essential feature for the emerging AR applications providing
oreal -time workplace/household visual assistance. Physical Based Ray-Tracing (PBRT) is
<roften used where synthesized images are generated by simulating the real environment
oand tracing the light transportation to achieve photorealistic effects, such as reflection,
z\refracnon soft shadows, etc. PBRT is widely used in product design, medical
\owsuallzatlon video games and movie effects. To enable photorealistic rendering, there
Jis a strong demand to support ray-tracing (RT) on mobile devices [1]. However, the
Schallenges are: (1) unstructured memory access pattern and complex control flow lead
Zto scheduling difficulty; (2) high memory requirements exhaust the limited SRAM space
Son edge devices; (3) low error tolerance requires high precision for computing; (4)
= complex computations, such as division and square root, require significant computing
=resources for the edge devices. As a result, common rendering engines such as Apple
5ARKit, OpenGL, are mainly based on the lower cost rasterization rendering technique.
A Unfortunately, rasterization rendering fails to produce photorealistic synthesis as shown
min Fig. 2.5.1. Few ASICs have been fabricated so far as a mobile photorealistic rendering
msolution solution, however, they may not support RT [2], or may suffer from low
S efficiency [3]. This work has developed a ray-tracing processor, which also supports
Sinverse rendering (IR) for background extraction [4]. The key features of this work
include: (1) an ASIC rendering processor that embeds an end-to-end PBRT solution with
<IR for AR on mobile devices, (2) a reconfigurable mixed-precision PE design supporting
édiverse computing tasks for both IR and RT, (3) background clustered Field of View
g(FOV)-focused 3D construction reducing conventional background scene complexity
Sfrom O(nlogn) to O(1), (4) scalable partitioning scheme for complex 3D objects, with an
@average of 13x speed up on test scenes, (5) use of Global RT Scheduler (GRTS) and
SGlobal Memory Access Controller (GMAC) to overcome the challenges of irregular
omemory access pattern and varied PE run-time with overall 684x speedup compared
mW|th the baseline design. The 28nm test chip achieves 3.95-28.8x higher rendering
mefflmency compared with existing ASIC solutions, enabling real-time PBRT rendering on
'amobile edge devices.

oFlgure 2.5.2 illustrates the computing flow of this work. In the first step, a 2D image
mcaptured by a regular camera is sent through a CNN-based physical decoder and encoder
for IR to obtain the background physical attributes, including four major background
%physical attribute (PA) maps: albedo, normal, lighting and depth maps. To save the
Bcompressed PA map on chip, a background clustering scheme is developed based on
Sthe similarity of neighbor pixel values of the background map by applying an average
gfilter. The result PA maps are stored in a Physical Attributes MEM (PAMEM). Each PE
‘Saccessing the PAMEM passes through the Per Pixel Compression Decoder (PPCD) and
Sthe Unified Address Converter (UAC) to fetch the corresponding background physical
wattributes parameter based on the PE task ID from the GRTS scheme. In this way, 145-
£4800x of memory saving for different backgrounds is achieved with 0.06% hardware
soverhead compared with the baseline design. In the second step, the IR result is used
gfor Camera FOV-focused 3D construction. As shown in Fig. 2.5.2, the background scene
—is constructed only for the 3D space covered by the user camera FOV. In this way, the
‘Sbackground scene complexity is reduced from O(nlogn) to O(1) compared with
§conventional RT solutions (n refers to the number of geometric primitives in the scene)
8[5]. In the last step, PBRT rendering is implemented to render 3D virtual objects with an
iaverage of 76% RT workload reduction compared with the conventional RT solutions as
Eshown in Fig. 2.5.2.

§Figure 2.5.3 shows the top-level architecture of this design. To increase the utilization of
“the PE and address the irregular access pattern to memory, an 8x6 PE array is
implemented with a GRTS and a GMAC. To support computation for both IR and RT
modes, a reconfigurable mixed-precision PE is developed as shown in Fig. 2.5.3. Each
PE contains a local PE Controller, clock-gating control, a computing core which supports
8h, 16b and 32b MAC, 64b division and 64b square root operations and a local OBJMEM.
Clock gating disables excessive computing units and local MEM in IR and RT modes
with 32% power saving. In RT mode, a scalable 3D model partitioning flow shown in
Fig. 2.5.3 is implemented. In contrast to the conventional solution that builds the BBOX
acceleration [6], this work introduces two types of object Bounding Box (BBOX): Empty
BBOX (EBBOX) and Target BBOX (TBBOX). EBBOX is only used for light transportation
estimation and shadow purposes, while the shading computation is skipped. TBBOX

includes a sub-group of user-defined objects inside. After the BBOX Intersection
Evaluator (BBIE) detects intersection with TBBOX, the Triangle Mesh Intersection
Evaluator (TIE) computes the triangle intersection, and the result is sent for shading
computing. With this scheme, complex 3D objects could be segmented for RT processing
without losing the ray-tracing effect. As a result, a linear scalability in RT rendering time
and an average of 13x speed up with only 5.6% memory overhead is achieved compared
with the baseline design.

Figure 2.5.4 shows on-chip data movement in IR and RT modes. In IR inference mode,
double input and weight stationary are supported. In RT mode, multiple PEs have
memory access conflicts, as shown in Fig. 2.5.4. To address the global PAMEM access
conflict and varied PE run-time, GRTS and GMAC are implemented. With the RT Token
Checker (RTTC) checking one PE status every clock cycle, GRTS and GMAC process the
RTTC selected PE request individually while GRTS refreshes the checked PE status if the
computation is done. In this way, we achieve 42.8x overall speed up from GRTS and
16x overall speed up from GMAC compared with the baseline design by introducing only
2.8% and 0.6% hardware cost. The detailed RT shading algorithm to compute the color
of each pixel is also shown in Fig. 2.5.4. RT shading demands complex operations, such
as sqrt and division. In this work, a PE Compute Unit (PCU) is implemented inside each
PE. As shown in Fig. 2.5.4, PAMEM, OBJMEM data are sent to PCU for shading
computation. PCU’s output is stored in a local shading register for lighting effect
accumulation. By implementing a PCU in each PE, all the RT computation can be finished
individually inside each PE.

Figure 2.5.5 shows the total runtime breakdown for the IR-RT flow and demonstrates
the background clustering scheme by showing the background reflection is able to light
up the object properly by using clustered PA map compared with the baseline design
with the detailed background PA map. Four virtual object insertion test cases with teacup,
Utah teapot, Stanford bunny and four spheres are demonstrated in Fig. 2.5.5 using the
IR-RT rendering scheme. Different materials, such as glass, mirror and ivory are
displayed with photorealistic rendering effects of reflection, refraction and shadow. The
IR-RT flow achieves an average of 26fps for real-time RT rendering with complex 3D
objects. Figure 2.5.5 also showed the 3D rendering case without IR with a predefined
3D background. Four spheres with different materials are inserted. Photorealistic effects
of refraction, reflection and object shadow are properly rendered to the image with 78fps,
meeting the requirement of real-time AR applications.

A 28nm test chip was fabricated with 0.9V nominal supply voltage. Figure 2.5.6 shows
more measurement and comparison results. Power and frequency scaling are shown in
Fig. 2.5.6 with a supply voltage from 0.6V to 0.9V. 500fps/W and 1418fps/W power
efficiency has been achieved at 0.9V for IR and RT modes, respectively. The comparison
table with prior art is provided in Fig. 2.5.6. This work implements IR-RT-based rendering
solutions, achieving 28.8x and 3.95x higher ray-tracing rendering efficiency compared
with prior ASIC designs, enabling real-time PBRT on mobile edge devices. Figure 2.5.7
shows the die photo and chip specifications.
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Figure 2.5.1: Overview of the photorealistic object insertion flow for AR applications. Figure 2.5.2: Inverse Rendering (IR) and Ray Tracing (RT) rendering flow with
Limitation of rasterization. Challenges for ray-tracing rendering and contributions of background physical attributes and camera field of view (FOV)-focused 3D
this work. construction.
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Figure 2.5.7: Die micrograph.
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