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ABSTRACT 

Modern biomedical devices use sensor fusion techniques to 

improve the classification accuracy of motion intent of users for 

rehabilitation application. The design of motion classifier observes 

significant challenges due to the large number of channels and 

stringent communication latency requirement.  This paper proposes 

an edge-computing distributed neural processor to effectively 

reduce the data traffic and physical wiring congestion.  A special 

local and global networking architecture is introduced to 

significantly reduce traffic among multi-chips in edge computing.  

To optimize the design space of the features selected, a systematic 

design methodology is proposed.  A novel mixed-signal feature 

extraction approach with assistance of neural network distortion 

recovery is also provided to significantly reduce the silicon area.  A 

12-channel 55nm CMOS test chip was implemented to demonstrate 

the proposed systematic design methodology. The measurement 

shows the test chip consumes only 20uW power, more than 

10,000X less power than the current clinically used microprocessor 

and can perform edge-computing networking operation within 5ms 

time.   

Keywords 

Neural network; Low power edge processing; Mixed signal feature 

extraction; Inter-chip communication; Biomedical devices. 

1 INTRODUCTION 

The fast growth of miniaturized and efficient electronics 

enables the development of unobtrusive and portable personal 

health care systems. Within the application space of biomedical 

sensors and processors, the rehabilitation assistive device, e.g. 

cybergloves, prosthetic limbs, is one of the fastest-growing fields 

that heavily reply on wearable high performance low power 

compute device to enable stringent real-time control of robotic 

assistive devices [1-2]. It is reported that over 156,000 patients in 

the U.S. suffer from the loss of lower or upper-limbs, which 

provides constant need of highly reliable, low power, and 

autonomous device for their rehabilitation treatment [3].  The 

robotic devices used for rehabilitation represent one of the most 

complex biomedical system for assistance of human activities. A 

major bottleneck in the building of a robust assistive prosthetic 

device is the development of energy efficient electronic system 

with an accurate signal processing method for sensing and 

classifying the intention of the users. Machine learning algorithms 

have been at the center of many amount of studies to improve the 

accuracy of classification [4-5]. To continuously improve the 

accuracy of motion detection, sensor fusion techniques which 

deploy heterogeneous sensors at a wide spread of body locations 

are used to increase the dimensionality of biological data which in 

turn produce a rich volume of information for high-fidelity 

classification [3, 6].   
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Figure 1: Overview of the biomedical rehabilitation sensor network 

and processing flow. (a) Sensor fusion used in existing rehabilitation [7-

8]. (b) Proposed distributed neural processors. 

In sensor fusion technique, heterogeneous sensors (e.g. 

surface electromyography (sEMG) sensors, strain sensors, 

accelerometers, inclinometers) across a wide body range are fused 

to provide highly accurate classification on patients’ motion intent 
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[7].  However, the large numbers of channels and heavy computing 

load lead to bottleneck at processor node.  As shown in Fig. 1(a), 

the sensors for the motion recognition are distributed across human 

body, which creates physical wiring jam and data communication 

bottleneck at the microprocessor node. With sensor fusion, 10~100 

channels with 80~800 input features need to be classified within 

10~20ms to not delay the response from personal assistive device 

[7-8]. As a result, the heavy computation load poses significant 

challenges to modern wearable devices. The existing clinically 

used embedded microprocessor like the TI’s OMAP4 processor, 

consumes six hundred milliwatts power. This results in heavy 

battery weight and routing congestion. More importantly, such a 

high-power consumption prevents the use of distributed 

architecture where computation is placed near the sensor nodes as 

the edge computing architecture proposed in this work.  

In this work, we proposed a scalable distributed neural network 

processor, which brings the benefits of edge computing and reduce 

the data traffic for networking as well as silicon cost and memory 

space. A large neural network is effectively split into distributed 

smaller ones leading to significant reduced cost and communication 

latency. Fig. 1(b) shows the proposed configuration.  Each neural 

processor is located near sensor node and performs local neural 

network classification. Only low dimension data is transferred 

through the network for final classification.  The main contributions 

of this work are summarized as below: 

• A novel edge computing neural processor for biomedical 

motion classification is proposed with a special distributed 

neural network (NN) architecture and communication protocol. 

• A systemic design methodology and optimization strategy for 

the distributed NN architecture is provided in detail.  

• A novel feature selection approach for sensor fusion is 

proposed to effectively reduce the computation requirement 

and memory space.  

• A novel mixed-signal feature extraction approach assisted by 

NN is also introduced to significantly reduce silicon area.  

• A test chip demonstration is provided to support the proposed 

edge computing method and systematic optimization scheme. 

To the best of our knowledge, this is the first time, a complete 

edge computing technique is demonstrated for biomedical 

application through a machine learning capable neural processor. 

2 EDGE COMPUTING USING 

DISTRIBUTED NEURAL NETWORK 

2.1 Motivation 

The conventional centralized computing strategy has been 

recently challenged by distributed computing such cloud 

computing or edge computing in the application space of smart 

health care system.  For instance, cloud computing has been 

proposed for disease diagnosis where expensive computation jobs 

are uploaded to the cloud to relieve the computing burden on local 

devices [9-10].  However, cloud computing incurs large latency due 

to data exchange between cloud servers and local devices and hence 

does not meet the stringent computing time requirement in our 

targeted rehabilitation application. Fog or edge computing is also 

proposed where sensor data are pre-processed in distributed local 

devices rather than the central cloud servers [11-12].  The use of 

edge computing method reduces congestions on data movement 

and data computation leading to quicker response, reduced 

communication bandwidth requirement and reduced computing 

power needed to the servers.  Existing edge computing techniques 

are mostly proposed for a large eco-system such as travel control, 

cellular network [12-13].  Body area network was also proposed to 

achieve shorter response time and better reliability as well as 

reduced communication bandwidth [14]. Unfortunately, all existing 

work used conventional Von Neumann architecture as computing 

unit. As machine learning accelerator, e.g. neural network 

processor, becomes more popular in existing compute unit, it is not 

clear how the emerging machine learning capable processing unit 

can be used to facilitate the benefit of edge computing.    

This work, for the first time, proposes the incorporation of 

edge computing into the design of neural network (NN) for body 

area network used in biomedical application.  Specially, we 

propose a distributed neural network design which combines both 

machine learning accelerator and edge computing techniques for 

energy efficient computing.   

2.2 Proposed Distributed Neural Network 

Fig. 2 shows the proposed architecture of the edge computing 

neural network processors. The sensed raw data by the biomedical 

sensors are processed by several local NN layers first, and then sent 

to a global output layers for classification.  Multiple chips can be 

jointly combined to process a larger neural network.  As a result, 

only low dimensional data needs to be communicated across chips 

significantly reducing both physical wiring connections and data 

traffic around the body area network.  In addition, the multi-chip 

solution brings economic benefits of scalability as single chip does 

not need to be designed to cover the worst scenario when large 

number of channels are to be supported.  The scalability of neural 

network leads to significant saving of silicon costs.   Comparing 

with the conventional fully-connected multilayer perceptron (MLP) 

architecture, the proposed distributed NN architecture split the 

hidden layers at local node.  As shown in Fig. 2, the implemented 

distributed neural network from multi-chips can collaboratively 

complete classification on large numbers of input nodes. One 

important benefit obtained from the distributed neural network is 

that the number of neuron connections are significantly reduced 

with slight reducing accuracy.  

In the proposed NN design, each chip consists of both local 

and global NN layers. Only global NN layer is communicated 

externally.  Multiple chips can be connected into a larger network. 

Compared with conventional single chip solution where all input 

channels, e.g. 72 channels in our example, need to be included in a 

single chip, the distributed design allows smaller units to form a 

larger network. The distribution of neural processor also brings the 

compute units closer to the sensor nodes leading to reduction of the 

traffic as well as physical wiring around the body. The parameter 

optimization and design strategy will be further discussed in 

Section 3.    
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Figure 2: Overall distributed neural network architecture. 

2.3 Communication Protocol 
Fig. 3 shows the networking protocol of the proposed 

distributed neural network. Each chip will be given a chip ID and 

has all knowledges of how many chips, neuron nodes exist in the 



network.  A master chip will be responsible for starting 

communication as well as providing a global clock to sync up the 

remaining chips.  Each chip sequentially sends its hidden layer 

neuron output to the global data bus. While one chip is sending 

data, all chips would be reading data from the single-bit data line.   

The global clock signal works to synchronize individual chip 

clocks that would contain slight clock frequency mismatch and may 

be out of phase. The sender chip sends data to the data line at rising 

edge of global clock. This new data will not be read by the rest of 

chips until a falling edge from the global clock occurs. The period 

of the global clock, Tglobal is a few times larger than the period of 

the local clock on chip clock, Tlocal. Since the global clock is a few 

times slower than the local clock, the mismatch in phase and 

frequency of the local clocks in different chips would not result in 

errors in data transmission. To keep track of what data has been 

sent and received, each chip keeps counters of the current state of 

which bits have been send, what neurons have been sent and which 

chips have sent data.  Fig. 3 shows the communication protocol 

diagram for the distributed neural network design.  
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chips. 

3 OPTIMIZATIONS FOR DISTRIBUTED 

NEURAL NETWORK 

3.1 Distributed Processor Number  

As explained before, the conventional fully-connected NN 

architecture is split into distributed processors to achieve edge 

processing. The number of distributed processors, i.e. parameter 𝑃 

in the following discussion, is one of the key parameters during the 

systematic design, as shown in Fig. 4.  

The use of local and global neural network allows significant 

reduction of networking latency compared with fully connected 

neural network. The latency for the fully-connected MLP 

architecture can be expressed as equation (1). 

𝑡𝐹𝐶,𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐼𝑡 ∙ 𝐵 ∙ 𝑇𝑔𝑙𝑜𝑏𝑎𝑙                                                               (1) 

in which 𝐼𝑡 represents the total number of neurons inputs, B is the 

number of bits for each neuron. Meanwhile the latency for the 

proposed distributed NN architecture is modeled as equation (2).  

𝑡𝑑𝑖𝑠𝑡,𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
𝐼𝑡

𝑃
∙ 𝑇𝑙𝑜𝑐𝑎𝑙                                                                      (2) 

where 𝑃 is the number of the distributed processors. Fig. 5 shows 

the simulated communication latency improvement with the 

scaling of the input neural nodes. Compared with fully connected 

network, in a three-chip distribution configuration, a 48X~240X 

reduction in networking latency is observed by the proposed 

distributed NN scheme. 

Besides the latency, the proposed distributed network also 

leads significant memory storage space reduction. The required 

memory for storing the NN weights in unit of bit can be expressed 

by equation (3). 

𝑆𝑀𝐸𝑀 =
𝐼𝑡 ∙ 𝑁𝑖 + ∑ 𝑁𝑖 ∙ 𝑁𝑖−1

ℎ
𝑖=2

𝑃
∙ 𝐵                                                  (3) 

The neuron numbers within each layer are represented by 𝑁𝑖. As 

the simulated result in Fig. 5, there is about 3~5X reduction of on-

chip memory storage space. 

While significant saving in latency, area, and power is 

observed in the proposed networking scheme, classification 

accuracy is slightly reduced compared with fully-connected 

network leading a tradeoff of power and cost with accuracy.  As 

shown in Fig. 6, with distributed processors, the inference accuracy 

is slight dropped by about 1~3% for one to three connected 

processors. As the completion time is critical for rehabilitation 

application, latency holds highest priority while low power is also 

important requirement for edge computing. Hence the accuracy is 

slightly traded off in this design to improve the overall 

performance, e.g. latency and power. 
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Figure 4: Dividing distributed neural distributed neural 

network (a) case of 2 processors (b) case of 4 processors. 
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Figure 6: The accuracy impact of NN distribution numbers. 



3.2 NN Architecture Optimization 

The optimizations for the NN hidden layer number and neuron 

numbers are discussed in this section. Same as the conventional NN 

design, the tradeoff between accuracy and area overhead dictates 

the design choices. 

For our target application, i.e. rehabilitation with sensor 

fusion, the total channels of the input sensing signals and associated 

features determine the number of input layer neurons, in the order 

of 80~800 input neurons as in our test cases.  Accordingly, we 

performed simulation on the choices of the hidden layers and 

neuron numbers. As shown in Fig. 7, with more hidden layers, the 

NN accuracy can be improved by 1.5%. Meanwhile, the space 

required from memory increases by 70%, which lead to a 2.25X 

increase in latency as well as 3.4X increase in area. As a result, 

given the priority for latency and chip power, a single hidden layer 

is chosen in the final design.  

Fig 7 shows the effect of neuron number on accuracy, 

communication latency and memory power. As the number of 

neurons increase, the prediction accuracy does increase, the rate of 

increase quickly saturates from the 24 neuron case. At the same 

time, increasing the number of neurons in the hidden layer neuron 

number would increase the communication latency since more 

neurons would need to send data.  The amount of memory space 

needed also increases proportionally with the number of neurons 

added.  As a result, 24 neurons per chip for a total of 72 neurons 

across 3 chips was decided under the tradeoff of accuracy, memory 

space and latency.   
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Figure 7: (a) Effect of neural network architecture (b) effect of 

neuron number on the hidden layer for three-chip 

configuration. 

4 OPTIMIZATION FOR SENSOR 

FUSION 

4.1 Characteristics of Heterogeneous Sensors  

We evaluate our work using the published Ninapro database 

which contains 40 subjects with 72 channels and totally 10 hours 

of movement [7].  Three types of sensor data are included in the 

database for motion detection in upper limbs: surface EMG 

(sEMG) sensors, accelerometer sensors and glove strain sensors.  

The sEMG signals are gathered by 12 active double–differential 

wireless electrodes from a Delsys Trigno Wireless EMG system. 

The sEMG signal which is sampled at 2kHz is then filtered by a 

50Hz filter to reduce the noise present in body area. Accelerometers 

are used to detect the acceleration change in motion within the 

gesture movement. 3-axis acceleration measurement is provided in 

the Delsys Trigno Wireless System. In total, 12 accelerometer 

sensors with 3 axes per sensor are used to generate 36 channels of 

acceleration data. In addition, the CyberGlove II is used for strain 

measurement at the joints of the arms [7]. Totally 22 channels are 

provided for strain measurements.   

The use of sensor fusion techniques creates high accuracy 

classification on users’ motion intent but also introduce large 

amount of data to be processed.  Different from image processing, 

the physiological data possesses highly stochastic biological 

signals.  As a result, features are extracted prior to classification.  

In this work, we extract the most commonly used features of the 

signals including mean, variance, the number of slope sign changes 

and histogram.  The number of input neurons for the neural network 

equals to the multiplication of numbers of input channels and 

features used for each channel.  As a result, the choices of features 

are important to achieve the best energy efficiency of the hardware 

design.      

4.2 Feature Ranking with Sensor 

Characteristics 

As different sensors, e.g. EMG, accelerometers, contain 

different characteristics of the signals, it is important to develop a 

methodology to analyze the significance of each feature for each 

sensor channel.  In this work, we propose a novel statistical 

evaluation method which formally rank the sensor features 

according to its contribution to the final accuracy. To achieve the 

goal, we propose using the two-sample Kolmogorv-Smirnov 

statistical test, where we compare a distribution of data points to 

another distribution of data points belonging to another label in 

order to create a matrix of comparison of how different the data 

from each label is from each other. This procedure is given in 

Algorithm 1 below. 

Algorithm 1 Feature Rank 

Procedure   Feature Rank (sensors, label_list, channel_list, 

feature_list, data) 

1. foreach k ∈ sensors do 

    //finding the similarity for each feature 

2.     foreach feature ∈ feature_list do 

3.         foreach channel ∈ channel_list do 

4.          data_s←get_feature(data, channel, feature, sensor) 

5.             foreach i ∈ label_list do 

6.                 foreach j ∈ label_list && j > i do 

7.                       dist1←extract_distribution(data_s, i)   

8.                       dist2←extract_distribution(data_s, j)  

9.                       score_m(i,j)←two_sample_ttest (dist1, dist2)   

10.                   end for 

11.               end for 

12.            channel_s(channel)←mean(score_m) 

13.        end for 

14.        feature_scores(sensor,feaure)←mean (channel_s) 

15.     end for 

16. end for 

17. return sort(feature_scores)  //return the order of all the scores 

 In this algorithm data represents the full dataset used. Sensors 

is the list of the types of sensors such as EMG, accelerometers and 

strain glove. The label_list is the list of all possible labels. 

channel_list is the channels associated with each sensor. 

feature_list contains all types of features being analyzed. This code 

would loop through every feature for every channel for every 

sensor and calculate a ranking score for that channel. To do this, 



the data from a feature for a channel is divided into sections. These 

sections are grouped with examples with matching labels. To 

calculate the score, a two-sample t test is run on each of the 

distributions to determine how different labels affect the 

distribution. Every combination is averaged together to create one 

score for this channel’s feature. Features of channels that shows low 

differentiation among different labels would provide data that is 

more ambiguous than features of that with high scores leading to 

confusion and difficulty for classification. Note that such a result 

varies from channel to channel.  Once this is done for all channels 

feature combinations, scores are aggregated by sensor type and 

feature type to create a score for each combination of feature and 

sensor.   

Fig. 8 shows the normalized scores given to features based on 

the feature rank method. For the sEMG channels, variance is the 

most important signal. For accelerometers, the mean feature is 

more important than the variance as well as some of the higher 

range histogram bins. The strain sensors from cyberglove values all 

the features although the mean, variance is more significant. 
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Figure 8: Feature rank score chart for each sensor and feature 

combination. 

4.3 Feature Space Reduction 

The benefit of removing various features is the reduction 

in weights required for the neural network as well as power saving 

from feature extraction. By choosing the right features for certain 

sensors, we minimize the impact on accuracy. The optimization 

problem proposed is to remove as many features from various 

sensors as possible while maintaining an accuracy loss within 1%. 

Using the proposed feature ranking method proposed in Algorithm 

1, the search space of the optimization problem can be simplified. 

Fig. 9 shows the results of these simulations. In this test we used a 

neural network divided into three sections with different sensors for 

each section. Algorithm 2 shows the pseudo codes for feature 

selection. 

Algorithm 2 Optimizing Features Selection 

Procedure neural_network_prunning (ranked_feature, 

max_accuracy) 

1. performance←mac_accuracy   

2. while max_accuracy-performance < 1% do 

3.     HiddenWeights←remove_feature(rank_feature(i))   

4.        performance←nn_classification (HiddenWeights)   

5.       i←i+1   

6.    end while 

7. return i-1  //return how many features were removed 

The ranked_feature is a list of ranked features determined by 

the rank feature procedure described in Algorithm 1. max_accuracy 

is accuracy attained without removing any features. The algorithm 

loops through the list of the worst ranked features and removes the 

links to that feature within the hidden weights. After this is done, 

we run the training and testing procedure of the neural network 

without that feature and obtain a prediction accuracy. The 

procedure is repeated to the next lowest feature until significant 

performance loss, e.g. 1% is observed. Fig. 9 plots the recorded 

accuracy of this test. In total there are 24 sensor feature 

combinations. The ranked feature algorithm allows 8 different 

sensor feature combinations to be removed while keeping the 

accuracy reduction within 1%. If 4 features are chosen at random, 

the accuracy loss can exceed 1%. Tolerating a loss of 1% can 

reduce the amount of memory required by an additional 20% when 

using the feature ranking method. This would also result in a 

reduction of computing power. 
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Figure 9: (a) Ranked feature removal vs random feature 

removal (b) Memory Reduction vs. number of features 

removed. 

5 ANALOG MIXED-SIGNAL SENSING 

AND DISTORTION RECOVERY 
To reduce the overhead of the design, we also propose a novel 

mixed signal feature extraction design which directly convert the 

analog signals into digital for the neural network classification.  

Conventional design uses high precision analog-digital converter 

(ADC) to process the signal from analog to the digital domain. In 

addition, a digital block for digital feature extractions (DFE) would 

be required to convert the digital signal into time-domain features, 

e.g. mean, variance, histogram, slope sign change, etc. [7].  The 

proposed architecture removes this two-step process and combines 

the front-end ADC and DFE into a simple direct mixed-signal 

feature extraction unit leading to 28X saving in area.   

5.1 Mixed-signal Feature Extraction 
The proposed mixed signal feature extraction unit calculates 

the four features discussed in section 4.1, i.e. mean, variance, slope-

sign change, and five histogram bins. Fig. 10 presents the proposed 

mixed-signal feature extraction techniques where eight features of 

analog signals are extracted using only simple VCO, comparator, 

counters, etc.   

With incoming signal bandwidth of a few kHz, the VCOs run 

at sub-threshold region between 10-300kHz speed and deliver 

pulses to subsequent counters for feature extraction. To calculate 

the mean feature, we send VCO’s output to a counter.  Since mean 

is proportional to the sum of all the events, we used this as the mean 

feature eliminating expensive digital calculation on mean feature 

and analog-to digital conversion. The ideal mean calculation can be 

represented by equation (4). The VCO based mean calculation can 

be represented by equation (5). 

𝑀𝑒𝑎𝑛𝑖𝑑𝑒𝑎𝑙 = ∑
𝑉𝑖𝑛(𝑖)

𝑁

𝑁

𝑖=1

                                                                   (4) 

𝑀𝑒𝑎𝑛𝑣𝑐𝑜 = ∫ 𝑉𝐶𝑂(𝑉𝑖𝑛(𝑖))
𝑁

0

                                                           (5) 

in which N represents the total number of examples in a window 

and Vin represents the voltage. The VCO function converts the 

voltage at time i into a count value that would be accumulated. The 



ideal variance calculation can be represented by equation (6). The 

VCO based variance can be represented by equation (7). 

𝑉𝑎𝑟𝑖𝑑𝑒𝑎𝑙 = ∑
(𝑉𝑖𝑛(𝑖) − µ)2

𝑁

𝑁

𝑖=1

                                                           (6) 

𝑉𝑎𝑟𝑣𝑐𝑜 = ∫ 𝑉𝐶𝑂(𝑉𝑖𝑛(𝑖) − µ)
𝑁

0

                                                        (7) 

in which µ is the average value of this channel. Like the mean VCO 

function, the variance VCO function converts the voltage at time i 

into a count value that would be accumulated. The overall design 

structure is similar to the mean as well. The VCO however is 

modified to take in a differential signal. The incoming analog signal 

is sent through a differential amplifier to modulate VCO speed 

according to signal’s deviation from its average input.  Since we 

are calculating the distance from the average value, this operation 

approximates the ideal variance operation. 

The calculation for the slope sign change can be represented 

by equation (8).  

𝑆𝑆𝐶 = ∑ [𝑠𝑖𝑔𝑛 (
𝑑𝑉𝑖𝑛(𝑖)

𝑑𝑡
) ≠ 𝑠𝑖𝑔𝑛 (

𝑑𝑉𝑖𝑛(𝑖 − 1)

𝑑𝑡
)]                (8) 

The slope sign change feature uses a bi-directional counter 

with the mean VCO. For one millisecond, this counter will count 

followed by one millisecond where the counter will count down. 

The most significant bit of the counter results is then compared with 

that from the previous 2-millisecond cycle. If this bit has changed, 

we determine that the slope sign has changed and will increment 

the output counts.  

The calculation for histogram is shown in equation (9).  

𝐻𝑖𝑠𝑡 = ∑ ∑(𝑉𝑖𝑛(𝑖) > 𝑉𝑡ℎ(𝑛)𝑙  & 𝑉𝑖𝑛(𝑖) < 𝑉𝑡ℎ(𝑛)ℎ )      

𝐵

𝑏𝑖𝑛 𝑛

(9) 

where B is the total number of bins, Vth(n)l is the lower bound of 

bin n and Vth(n)h is the lower bound of bin n. To calculate the 

histogram of the inputs, the channel voltage is sent to a series a 

clocked comparator with various levels of reference voltages to 

determine what bin range the voltage fell into. The clocked 

comparators a triggered once every millisecond and produce a 

clock like pulse which is sent to the counter. Each bin range would 

have a separate counter. 
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Figure 10: Circuit implementation of feature extraction. 

5.2 Distortion Recovery from Neural Network 
Despite of the dramatic saving from the proposed scheme by 

removal of ADC, such a VCO based conversion method leads to 

strong distortion in feature obtained [15].  Fig. 11 shows the non-

linear relationship between input voltage and count generated. At 

the top end of the distribution, the count shows a decrease in 

linearity while the bottom end also loses some of the linearity as 

well. For the mean feature, this distorted curve can be modelled as 

equation 11.  

𝑀𝑒𝑎𝑛 =  −1.5𝑥4 + 0.5𝑥3 + 2.3𝑥2 − 0.1𝑥                                 (10) 

x represents the normalized signal value coming from a sensor. 
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Figure 11: Ideal vs measured feature results for mean and 

variance. 

The features mean, and variance show distortion from VCOs 

because the speed of the VCO is not linear with respect to the 

voltage input due to the operation in the near/subthreshold region 

of the transistors in VCO.    Fig. 12(a) shows the loss of functional 

mapping between the ideal floating-point feature value and the 

VCO circuit implementation-based design.  
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Figure 12: (a) Ideal feature values vs. distorted feature values 

(b) NN correction (c) hidden weight distortion filtering (d) 

output weight distortion filtering.  

As seen in equation (10), the near-threshold operation of VCO 

produces strong 2nd and 4th order distortion leading to collapse of 

feature spaces and degradation from linear classifiers. Such a 

distortion leads to significant degradation, 6% from commonly 

used classifier, e.g. simple linear SVM.  However, the degradation 

from neural network (NN) is only 1%, thanks to the strong 

nonlinear operation of neural network.  The training of NN using 

the distorted feature characteristics leads to a recovery of the 

accuracy loss from the low-cost feature extraction circuits in this 

work.   



Fig. 12(c) and Fig. 12(d) show how the weights are filtered by 

the neural network to combat distorted data. Given that the feature 

data is of a similar magnitude data will tend to have much smaller 

weights after training. This reduces the focus of the results on the 

distorted data and in turn moves it to less distorted features. This is 

seen within some individual weights associated with features as 

well as entire neurons if the results fed to the neuron are quite 

distorted. The error for each weight can be calculated using 

equation (11).  

𝐸𝑟𝑟𝑜𝑟 = (𝐿2𝑁𝑜𝑟𝑚 (𝜎(𝑂𝑊 ∙ 𝜎(𝐻𝑊 ∙ 𝐼))) − 𝑡)                                         (11) 

in which OW represents output weights, HW represents hidden 

weights, and 𝜎  represents the activation function. I is the input 

vector and t the target vector for the example in question. The 

change in weights are calculated by equation (12). 

∆𝑂𝑊 = (𝑑𝜎(𝑂𝑊 ∙ 𝐻𝑉))(𝑂𝑉 − 𝑡)                                                                    (12) 

in which OV represents the output of the output layer and HV 

represents the output of the hidden layer. If the data is distorted, the 

delta weight values would remain large over time. Features that 

contain inconsistent results within the neural network would have 

a much tougher time creating a consistent impact on the for the 

backpropagation weights causing these values to go back and forth. 

The neural network will filter out these inconsistent features 

through the backpropagation algorithm. Overall, the use of neural 

network allows elimination of expensive analog front-end, e.g. 

ADC, leading to significant saving of silicon area. The proposed 

mixed-signal architecture highlights another contribution from 

machine learning technique to modern electronic design.  

6 TEST CHIP MEASURMENT 

6.1 Design Overview 
To verify the proposed scheme, a 55nm CMOS test chip is 

built.  Fig. 13 shows the top-level design of the system with 3 neural 

network processor chips. Each chip was built with 12 channels. The 

mixed signal feature extraction unit provides each channel with 8 

extracted features. On chip memory was provided to store the 

values of the weights used.  
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Figure 13: Neural network processor diagram. 

For the testing setup,  multiple chips are mounted on the test 

PCB board. A FPGA was used as interface for programming the 

chip and scanning in and out the data. The classification results are 

gathered through the scan out signal. The recorded analog signals 

from patients in Ninapro database are replayed using the USB-

DA12-8A digital to analog converters (DAC) by ACCES. The 

EMG signals were amplified by ~2000X.   

6.2 Classification Accuracy and Networking 
Fig. 14 shows the measured classification results compared 

with ideal PC-based floating-point operation using Ninapro 

database [7]. When using the sensor fusion technique, accuracy 

improves with more channels due to the sensor fusion technique. 

Using floating point as opposed to 16-bit fixed point only degrades 

performance by 1%-2%. The degradation is limited within 2% due 

to the integer point operation and distortion from mixed-signal 

feature extraction. The confusion matrix in Fig. 14 shows where the 

errors with respect to each gesture is coming from with respect to 

each gesture. This shows that there are some similar gestures such 

as the wrist movements have a much higher chance of being 

confused with each other.  
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Figure 14: Measured motion classification accuracy and 

completion time.     
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Figure 15: Measured communication waveforms across three 

chips.  

Fig. 15 shows the measured communication waveforms when 

connecting three chips together. Communication is completed 

within 5~15ms scalable with supply voltages. When the supply 

voltage is at 0.65V for both the neural network and SRAM, the 

classification time would take 15msec. This is still under the 

20msec tolerance time for notice by the users [3]. The same 

operation can be completed within a third of the time at a 0.9V 

supply voltage for SRAM and neural network. The communication 



measurement confirms the effectiveness of the proposed 

architecture using edge computing distributed neural network. Up 

to six chips can be connected in the current implementation.  

6.3 Area and Power Consumption 
Fig. 16 shows the benefits of mixed-signal feature extraction 

compared with digital implementation of feature extraction using 

traditional ASIC design flow.  For each channel, area was reduced 

by a factor of 4. Another benefit of the mixed signal extraction is 

the reduction in the use of the ADC. Compared with prior report, a 

24X reduction in area is observed using the proposed mixed signal 

feature extraction [16,17].  Overall, a 28X reduction in area is 

achieved including digital feature extraction. Fig. 15 contains a 

power breakdown at various supply voltages. The proposed design 

is dominated by the feature extraction circuit since this block must 

always be turned on to gather continuous data. The neural network 

is clock gated at ~5% activation rate reducing the required power 

of this section. At a voltage of 0.65V, a 2.1µW/channel or total 

26µW is observed.  Due to the lack of existing ASIC design for 

motion classification, we compare with existing ECG processor 

and slower EMG applications [18,19].  This design consumes 

smaller power per channel with the addition of networking 

capability compared with that used in ECG application and 

complete the tasks in millisecond instead of second’s operation in 

ECG application [18].  Compared with the existing clinically used 

microprocessor which consumes 600mW and requires 15ms for the 

same classification job, more than 10,000X power reduction is 

achieved.       
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Figure 16: Measured single chip power, area savings and chip 

micrograph. 

7 CONCLUSION 
This work proposes an architecture and optimization method 

for a novel edge computing distributed neural processor for motion 

intent recognition used in rehabilitation.  The distributed neural 

network processors produce a scalable, expandable neural network 

and effectively reduce the communication latency and memory 

space.  Systematic design and optimization approaches including a 

novel feature ranking approach are proposed in this work to further 

improve the efficiency of the design.  Edge computing can produce 

a 48X speedup in communication latency within a given layer and 

can reduce the number of weights required by 3X when using three 

processor units. Mixed-signal feature extraction design is also 

proposed to reduce the area by 24X.  A 12-channel 55nm CMOS 

test chip is implemented consuming 2.1µW/channel with 

millisecond recognition time and networking capability fully 

demonstrating the proposed architecture and optimization method.  
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