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Abstract - A proactive power regulation scheme for mitigating 
dynamic supply droop is proposed with a fully-integrated buck 
converter, a CPU core and a real-time machine learning (ML) 
engine. Combined with droop guardband circuits, the proactive 
scheme demonstrates up to 9.9% higher CPU frequency or 
9.2% higher power efficiency compared with prior fast LDO 
scheme or conventional converters using a 65nm test chip.  

Introduction 
Power integrity has become a major challenge in advanced 

CMOS with sub-1V supply voltage and drastically varying 
workload in a digital SoC. The conventional power 
management approaches engaging regular control loop of 
power converters are too slow for highly dynamic events such 
as sudden change of workload, resonant droop, or instruction 
specific power surges, causing excessive voltage margin [1].  
For highly dynamic supply droops, fast digital LDOs or event-
based LDOs were designed to react promptly to the workload 
variation and provide on-demand regulation [2, 3]. As shown 
in Fig. 1, a speed and efficiency tradeoff are observed where 
digital LDO offers sub-ns regulation with low efficiency while 
the DC-DC converters suffer from slow response. Recently, 
“proactive” clock throttling techniques were developed on both 
DSP and high-end processors where instruction-based 
prediction led to 10% frequency improvement [4, 5]. However, 
clock throttling incurs performance penalty and does not 
fundamentally remove the adversarial effects of supply droop. 
This work demonstrates proactive power management for 
modern SoC with fully integrated power converters and digital 
microprocessors. As in Fig.1, the current consumption of a 
microprocessor observes significant variation at cycle-by-
cycle bases. Three dimensions of dependency need to be 
captured including (1) instructions being executed, (2) 
instruction sequence, (3) real-time traces of supply voltage to 
predict supply events leading to complex computational 
models. To deal with these challenges, this work demonstrates 
a comprehensive solution for proactive power regulation using 
a real-time ML engine for droop prediction and a fast power 
converter with “safety” guardband. The proactive techniques 
allow actions to be taken before the happening of real events 
reducing the fundamental speed limitation of power converters 
as demonstrated by a 65nm test chip.  

Proactive Power Regulation 
Fig. 2 shows the overall chip architecture of the proposed 

scheme. A RISC-V CPU at about 800MHz from a nominal 
supply of 1.0V to 1.2V is powered by a fully integrated buck 
converter which includes a feedback control loop at 
10~50MHz and a fast PWM generator with PWM signals at 
600~1GHz for two-phase interleaved power cores. The power 
cores integrate on-chip spiral inductors and convert an IO input 
voltage of 1.8V to CPU’s supply voltage between 0.6V and 
1.4V. A special ML core is used to generate prediction of 
supply droop and issue power regulation through a fast PWM 
modulation (FPWMM) module.  Short-term guardband circuits 
are included as “safety net” for ML’s false prediction while 
long-term guardband deals with larger and slower droop. For 
testing, a cycle-by-cycle voltage recorder (VR) with 2k depth 
is implemented to record real-time voltage droop.  

Fig. 3 shows the detailed design of the real-time ML core. 
The fetched instructions from RISC-V CPU are sent into the 
ML core for prediction providing 3~4 cycles lead time before 
the high-power stage at the execution or memory write back 
stages. For power dependency on instruction and sequence, the 
past three decoded instructions are kept in an instruction queue. 
The instruction information is further grouped into clusters of 
features, e.g. ALU activities, memory load/store activities, etc. 
with 52 1-bit real-time “feature” signals as input to a linear 
regression core to predict the upcoming current of the CPU. 
The regression result is then sent into a decision tree realized 
by a lookup table for combining with voltage information.  The 
control command based on current prediction and real-time 
voltage is sent to buck converter for power regulation.  The use 
of 1-bit feature and 4-bit stationary weight allows a multiplier-
less regression with 16X reduction of power and minor 
accuracy loss compared with a 2-layer neural network. As 
shown in Fig. 3, a combined true positive rate (TPR) of 92.2% 
or false positive rate (FPR) of 4.7% for an undershot is 
achieved for an example benchmark program.  The ML core 
incurs 2.4~3.5% power overhead to the CPU but achieves 
power saving due to higher efficiency from regulators as 
discussed later. The ML model is trained offline by a joint 
analog and digital simulation framework and is further adjusted 
based on silicon characterization data as described in Fig. 4. 

Fig. 4 shows the main circuits inside the buck converter 
supporting ML operation.  The FPWMM regulates the inductor 
current by modulating the original PWM signals within one 
PWM clock cycle (1~2ns) using time-domain programmable 
pulse “stretcher” and “trimmer” based on commands issued 
from ML core. To deal with the occasional misprediction of 
ML, a short-term droop guardband (SGB) is implemented near 
the processor to bring the voltage back immediately with a total 
transient delay of less than 300ps. As SGB behaves like digital 
LDO, it should be activated as little as possible to reduce 
efficiency loss demanding high accuracy of ML prediction. 
Long-term droop guardband (LGB) controlled by event-based 
scheme similar to [3] is deployed to deal with the slower but 
larger power change, e.g., sudden CPU’s wakeup, which is 
beyond the fine-grain regulation from ML predictions. 
Additional PWM offset inversely proportional to threshold 
crossing time is issued in LGB through a fast feedforward path 
when supply droop is not recovered by ML/SGB within 2 clock 
cycles. LGB reacts within ~5 CPU clock cycles which is much 
faster than the main regulator loop at 10~50MHz.  

Measurement Results 
A test chip was fabricated in a 65nm process. The CPU 

functionality under dynamic supply droops were verified by 
running benchmark programs and scanning out all internal 
register files and caches. Multiple benchmark programs have 
been run on the SoC with performance and ML accuracy 
evaluated.  Fig. 5 shows examples of the measured supply 
waveforms captured from voltage recorder in comparison with 
simulation results on StringSearch and CoreMark programs. 
Three modes of operations were recorded including (1) 
baseline without ML or SGB, (2) operation with ML core but 
without SGB, (3) operation with both ML core and SGB.  



Measurements from voltage recorder show a droop reduction 
up to 100mV when both ML and SGB was used. The SGB was 
triggered only at 1% of the time (about 10 out of 1k cycles) 
providing safety guardband for ML with negligible power loss. 
Measurement on LGB shows a 5-cycle recovering from a 
power surge of 5mW to 150mW. Fig. 5 also shows the 
measured converter efficiency under the CPU workload and 
the frequency improvement from droop reduction. The 
proactive power regulation results in 6.2~9.9% higher CPU 
frequency due to droop mitigation from 0.6~1.2V. The 
proactive approach enabled the use of slower buck converters 
with 5.1~9.2% higher power efficiency compared with digital 
LDO for providing similar cycle-level droop mitigation using 
prior fast LDO methods [2]. Fig. 5 also shows a comparison 
with conventional buck converters by simulating this design 
w/o ML prediction at 50MHz (w/ larger L) matching that with 
common buck converters. A ~100mV supply noise (average 
52mV VDD) reduction or equivalent 9.1% power saving is 
observed showing the benefit of the proactive scheme over 
conventional converters. Fig. 6 shows the impact of prediction 
accuracy on power efficiency. When TPR is lower than ~60%, 
the efficiency dropped by 6~9% due to frequent activation of 
SGB approaching conventional “reactive approach”. The five 
benchmark programs all achieve more than 80% TPR with 
negligible power loss from SGB. Fig. 6 also shows the die 
micrograph, efficiency of the buck converter and comparison 
with prior droop mitigation schemes. Compared with clock-
based schemes [4, 6], this work removes the impact of supply 
droop. This is the first work utilizing proactive technique for 
droop mitigation overcoming the efficiency and speed tradeoff 
of conventional LDO and power converters. 
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Fig. 1: Concept of proactive power regulation and challenges. 
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Fig. 2: Top-level block diagram of the test chip. 
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Fig. 4: Fast PWM modulation, short-term droop guardband and long-
term droop guardband (left) and ML design flow (right). 
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Fig.5: Measured supply droop performance, frequency, and efficiency 
benefits across VDD. 
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Fig. 6: Die micrograph, more benchmark accuracy, efficiency vs. 
prediction accuracy, regulator efficiency and comparison table. 


