
366 • 2024 IEEE International Solid-State Circuits Conference

ISSCC 2024 / SESSION 20 / MACHINE LEARNING ACCELERATORS / 20.4

20.4 A 28nm Physics Computing Unit Supporting Emerging
 Physics-Informed Neural Network and Finite Element Method
 for Real-Time Scientific Computing on Edge Devices

Yuhao Ju, Ganqi Xu, Jie Gu

Northwestern University, Evanston, IL

The demand for real-time computing on edge devices from emerging applications, e.g.
AI, has exploded in recent years. Lately, physics-based scientific computing has also
drawn significant interests driven by the growth of real-time applications, e.g., VR, IoT,
robotics, etc. Fig. 20.4.1 shows examples of real-time physics-based computation
including structural deformation in photorealistic VR/MR, robot dynamic control,
temperature monitoring in additive manufacturing, and real-time leak-gas tracking.
Unfortunately, hardware support for numerical scientific computing on edge devices is
relatively poor, hindering the use of high-accuracy, high-resolution physics-based
computing in real time. Figure 20.4.1 shows an example of beam deformation analysis
in VR/MR falling short of a real-time latency target using classic solvers due to the large
number of iterations for convergence. Recently, ASIC solvers have been designed to
solve Poisson equation-related applications with a finite difference method (FDM), but
have trouble handling more complex structures [1-3]. To overcome the real-time hurdle,
physics-informed neural network (PINN) or physics-informed machine learning (PIML)
solutions [4-7] are being developed by the scientific community, using a data-driven
approach to boost the computing efficiency of physics solvers. Figure 20.4.1 shows
PINN solutions can reach 1900-10000× speedup compared with classic solvers based
on Nvidia Modulus with less than 1% accuracy loss [4]. However, if numerous physics
equations are to be processed by a PINN, highly diversified dataflows are needed to
support a variety of PINN models, making it unfriendly to an ASIC solution. In addition,
a tradeoff of speed and accuracy needs to be made between a PINN and classic numerical
solutions for a specific application. To overcome these challenges, this work presents a
unified physics computing unit (PhyCU) architecture supporting both PINNs and classic
finite element method (FEM) solution. The highlights of PhyCU are as follows: 1) This
work delivers an ASIC solution supporting inference for most major PINN models with
configurable dataflow; 2) The PhyCU architecture also natively supports the classic FEM
through a conjugate gradient iterative method (CG) providing a high-accuracy alternative
using the same hardware; 3) Sparsity and data compression techniques for both PINN
and FEM computation are developed achieving orders of magnitude latency reduction
compared with a classic solution on GPU and 19.5-35.9× energy savings compared with
prior ASICs.

Figure 20.4.2 shows the supported algorithms, namely, PINN and FEM. The PINN takes
coordinates and time steps as input data for a neural network (NN) model and generates
the physical status for each mesh node, e.g., fluid velocity. As a PINN’s loss function is
confined by underlining physics principles, boundary conditions and initial conditions,
PINN offers smaller and more accurate models compared with a plain NN. As for the
FEM algorithm, after meshing the object with selected element shape, basic functions in
cooperation with variational calculus and integrals are used to generate a symmetrical
equation system. CG is the selected numerical method of PhyCU FEM mode due to its
high convergence efficiency for complicated systems, e.g., 125× fewer iterations than
some other iterative methods from prior works, e.g. Jacobi, and its high compatibility
with the PINN architecture due to the use of matrix multiplication. As shown in Fig.
20.4.2, the PhyCU architecture contains an array of 9×16 2D physics processing
elements (PHY-E) with top general purpose (TGP) SRAM banks, bottom general purpose
(BGP) SRAM banks, input SRAM banks and a SRAM bank for special parameters. An
Input Data Compression Module (ICDM) compresses coordinates with simple adders
and control logic by utilizing the physics meshing characteristics for both PINN and FEM
modes. An Offset-Based Sparsity Adders Scheduler (OBSAS) is designed to improve
sparse matrix-vector multiplication (SpMV) in CG and PINN. The PHY-E supports
output/weight stationary NN dataflows, with a multiplier and an ALU for various numerical
operations in FEM and PINN. PHY-E supports 8b,16b, 32b precision for latency and
accuracy tradeoff.

Figure 20.4.3 shows the supported highly diversified PINN inference models with 7
dedicated dataflows. Except the common NN dataflows, such as fully connected (FC)
and convolutional NN (CNN), many PINN models need cos/sin activations such as Fourier
Network (FN), SiReNs [5], etc. To realize cos/sin in the integer domain, polynomial
approximation is implemented in PhyCU by approximating cos/sin functions as piecewise
functions with the PHY-E array used for range selection and MAC operations. Another
specially built dataflow is for the Discrete Fourier Transform (DFT) of the Fourier Neural
Operator (FNO) [6]. Mathematical transformation with trigonometric function is used to
replace DFT with matrix multiplications with a small matrix size by eliminating the
repeated calculations in the original DFT, which provides a 26× run cycle saving for an
application with a 32×32 elements mesh. For the dataflow in the Deep Galerkin Method
(DGM) network, which is similar to LSTM, PhyCU reuses input SRAM as the final output
SRAM avoiding the data transfer for later iterations in the DGM network. Figure 20.4.3
also shows the details of the input mesh data compression (IDCM) operation used in

this work. Different elements have the same space within a specific segment as in the
example of the bottom slice from a beam mesh. For each segment with the same grid
space, only initial coordinate and grid space numbers need to be stored in input SRAM.
ICDM utilizes adder chains to accumulate space numbers from the initial coordinates for
generating a complete input dataset automatically, eliminating the coordinate information
for the segments of the object. By implementing ICDM, input data size is reduced by
74% for PINN and 81% for FEM for a 3D sink heat-transfer analysis. By gating the input
SRAM during computing using the compressed data from ICDM, a 27-32% power saving
is achieved for the first layer inference of PINN or FEM integral operation.

Figure 20.4.4 describes details and optimizations for FEM mode of the PhyCU. The PHY-
Es transfer the triple integral of 3D objects and structures to MAC and ALU operations
with coordinates from IDCM as input. Among the three major operations in the CG
algorithm, SpMV takes 87% of CG workload in each iteration. To optimize SpMV, an
Offset-Based Sparsity Adders Scheduler (OBSAS) is implemented exploiting the sparsity
of the coefficient matrix of the equation system (matrix A) which is the integral result. In
FEM, each node of mesh only interacts with its neighbor nodes. Hence, the non-zero
values of matrix A are only located along the diagonal groups with three consecutive
elements, as in the beam mesh example shown in Fig. 20.4.4. Utilizing fixed offsets, e.g.
length offset, layer offset on sparse matrix A and the reload offset from PHY-E array size,
a significant compression is achieved leveraging the repetitive pattern of meshing. As
shown in Fig. 20.4.4, the indices of each row of compressed matrix A are continuous
and can be generated by shifting the indices from other rows in the same group. By
utilizing self-accumulating adders and 3 offsets above, the OBSAS can generate the
required address for the parameter vector Pk for SpMV of A*Pk in CG without any index
record of the compressed matrix A. Pk can be directly sent to the PHY-E array to be
multiplied by a group of compressed matrix A after generating all Pk values by 2 shifters
in the OBSAS. The compression through the OBSAS leads to a 460× CG speedup on a
3D 12500-element heat-sink application with FEM.

A 28nm PhyCU test chip has been fabricated. Figure 20.4.5 shows three detailed real-
time test cases. The first case is a beam deformation from a hand push using the dynamic
equilibrium equation in a VR/MR environment with a 25fps requirement. PhyCU finished
the deformation analysis in only 8ms by using a GNN-based PINN operator vs. 9s on
RTX3080 GPU using conventional solver rendering a 1125× speedup with a 1.9%
accuracy degradation. The second case is fluid pressure analysis with an aneurysm
during medical imaging. PhyCU finished the analysis in 22ms achieving 2590× speedup
vs. conventional solvers on GPU with 2.6% accuracy loss. In the third case,
thermodynamics and fluid dynamics are combined for heat-transfer and fluid-velocity
analysis. PhyCU finished the analysis in 40ms with 1839× speedup over GPU and 3.39%
accuracy loss. Ten additional test cases from Nvidia Modulus [4] are also shown in Fig.
20.4.5. PINN in PhyCU achieves 434-to-2457× speedup over GPU with 1-to-5.7%
(average 2.4%) accuracy loss.

Figure 20.4.6 shows the measured power, frequency and energy efficiency with a supply
voltage scaling from 0.9V to 0.55V. A 1.14-to-2.67TOPS/W energy efficiency and a 1.01-
to-2.05TOPS/W energy efficiency are achieved for 16b PINN and FEM, respectively. A
comparison table with prior physics solvers is shown in Fig. 20.4.6. The PhyCU in this
design enables physics scientific computing for both PINN and FEM and solves a larger
space of applications beyond Poisson equations with lower latency and energy
consumption compared with prior work [1-3]. For the example of a 512-element 3D
Poisson equation test case, PhyCU achieves 382-to-779× speedup and 19.5-to-35.9×
energy saving compared with prior ASICs. The latency and energy savings from PhyCU
FEM comes from the faster convergence of CG method, sparsity techniques and bit-
parallel computing, while the savings from PhyCU PINN are attributed to the lower
computing cost of PINN inference. Figure 20.4.7 shows the die photo and chip
specifications.

Acknowledgement:

This work is supported in part by NSF grant CCF-2008906.

References:
[1] J. Mu et al., “29.2 A 21×21 Dynamic-Precision Bit-Serial Computing Graph
Accelerator for Solving Partial Differential Equations Using Finite Difference Method,”
ISSCC, pp. 406-408, 2021.
[2] T. Chen et al., “A 1.87-mm2 56.9-GOPS Accelerator for Solving Partial Differential
Equations,” IEEE JSSC, vol. 55, no. 6, pp. 1709-1718, 2020.
[3] J. Mu et al., “A Scalable Bit-Serial Computing Hardware Accelerator for Solving 2D/3D
Partial Differential Equations Using Finite Difference Method,” ESSCIRC, pp. 353-356,
2022.
[4] Nvidia Modulus Document, <https://docs.nvidia.com/modulus/index.html>, accessed:
November 2023.
[5] V. Sitzmann et al., “Implicit Neural Representations with Periodic Activation
Functions,” NeurIPS, pp. 7462-7473, 2020.
[6] Z. Li et al., “Fourier Neural Operator for Parametric Partial Differential Equations,”
ICLR, 2021.
[7] Q. Hernandez et al., “Thermodynamics-Informed Neural Networks for Physically
Realistic Mixed Reality,” arXiv: 2210.13414, 2022.

979-8-3503-0620-0/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ol

id
-S

ta
te

 C
irc

ui
ts

 C
on

fe
re

nc
e

(I
SS

C
C

) |
 9

79
-8

-3
50

3-
06

20
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
SC

C
49

65
7.

20
24

.1
04

54
50

2

Authorized licensed use limited to: Northwestern University. Downloaded on April 25,2024 at 15:47:41 UTC from IEEE Xplore. Restrictions apply.

367

ISSCC 2024 / February 21, 2024 / 9:15 AM

DIGEST OF TECHNICAL PAPERS •

Figure 20.4.1: Applications and the challenges of existing numerical and PINN
solutions for real-time physics scientific computing on edge devices, as well as the
contributions of this work.

Figure 20.4.2: PINN algorithm and finite element method (FEM) using conjugate
gradient (CG) iterative method. Top-level chip architecture with sparsity, data
compression and dataflow features.

Figure 20.4.3: Examples of the configurable dataflows optimized for PINN supporting
diversified models and the input mesh data compression (IDCM) technique for both
FEM and PINN.

Figure 20.4.4: Implementation details of FEM mode with programmable integral,
optimized CG iterative method, and index-free data compression technique using
Offset-Based Sparsity Adders Scheduler (OBSAS).

Figure 20.4.5: Demonstrations for real-time applications on edge devices with
latency reduction compared with conventional numerical solutions for scientific
computing on GPU. Figure 20.4.6: Measurement results and comparison table.

20

Authorized licensed use limited to: Northwestern University. Downloaded on April 25,2024 at 15:47:41 UTC from IEEE Xplore. Restrictions apply.

• 2024 IEEE International Solid-State Circuits Conference

ISSCC 2024 PAPER CONTINUATIONS

979-8-3503-0620-0/24/$31.00 ©2024 IEEE

Figure 20.4.7: Die micrograph and details.

Authorized licensed use limited to: Northwestern University. Downloaded on April 25,2024 at 15:47:41 UTC from IEEE Xplore. Restrictions apply.

