

NCPU: An Embedded Neural CPU Architecture on

Resource-Constrained Low Power Devices for Real-

time End-to-End Performance

Tianyu Jia, Yuhao Ju, Russ Joseph, Jie Gu

Northwestern University, Evanston, IL

{tianyujia2015, yuhaoju2017}@u.northwestern.edu, rjoseph@eecs.northwestern.edu, jgu@northwestern.edu

Abstract— Machine learning inference has become an essential

task for embedded edge devices requiring the deployment of costly

deep neural network accelerators onto extremely resource-

constrained hardware. Although many optimization strategies

have been proposed to improve the efficiency of standalone

accelerators, the optimization for end-to-end performance of a

computing device with heterogeneous cores is still challenging and

often overlooked, especially for low power devices. In this paper,

we propose a unified reconfigurable architecture, referred as

Neural CPU (NCPU), for low-cost embedded systems. The

proposed architecture is built on a binary neural network

accelerator with the capability of emulating an in-order RISC-V

CPU pipeline. The NCPU supports flexible programmability of

RISC-V and maintains data locally to avoid costly core-to-core

data transfer. A two-core NCPU SoC is designed and fabricated in

a 65nm CMOS process. Comparing with the conventional

heterogeneous architecture, a single NCPU achieves 35% area

reduction and 12% energy saving at 0.4V, which is suitable for low

power and low-cost embedded edge devices. The NCPU design also

features the capability of smoothly switching between general-

purpose CPU operation and a binary neural network inference to

realize full utilization of the cores. The implemented two-core

NCPU SoC achieves an end-to-end performance speed-up of 43%

or equivalent 74% energy saving based on use cases of real-time

image classification and motion detection.

Keywords— Reconfigurable architecture, embedded systems,

ultra-low power device, binary neural network, RISC-V, end-to-end

performance, SoC silicon validation.

I. INTRODUCTION

A growing gap is observed between the computing demand
and the availability of hardware resources in low power
embedded systems. On one hand, the immense impact of
ubiquitous computing is unfortunately confined by power and
cost constraints of hardware devices. Many emerging
applications in Internet-of-Things (IoT) [1-2] and sensor
networks [3] rely on energy-scavenging devices to perform
critical measurement, computation, and communication tasks
with extremely limited and unpredictable power sources.
Wearables and biomedical devices also suffer from the very
tight budgets of energy consumption and form factors [4-5]. On
the other hand, the machine learning (ML) tasks, such as deep

neural network (DNN), have become a widely deployed and
often essential workload on systems from datacenters all the way
down to low power mobile devices [6-8]. Unfortunately, the
resource demand from such ML applications is often
prohibitively high for low-power low-cost embedded systems.

To support the heavy workload of ML tasks, recent
embedded SoCs normally adopt a heterogeneous architecture
which consists of both general-purpose processors, e.g. CPUs,
and domain-specific accelerators, such as DNN accelerator [9-
13], as shown in Fig. 1. However, for resource-constrained
embedded systems, e.g. smart sensors, micro drones, which
have limited form factors and power budget, deploying a DNN
accelerator core is often too costly due to high consumption of
power and area overheads. As reported in many industry-grade
embedded or mobile SoCs, the neural network accelerator
engines could consume a few times more area and power than a
CPU core due to the large number of MAC units and the large
SRAM storage space required by ML accelerators [10-11].

In addition to the power and area cost, the heterogeneous
architecture is often bottlenecked by the expensive ML task
offloading and CPU/accelerator under-utilization. To accelerate
computation of intensive tasks for ML, these tasks are
commonly offloaded from CPU to accelerators [23-24].
However, the unbalanced workload between CPU and
accelerators could significantly degrade the core utilization rate
and impact end-to-end execution latency. For instance, the CPU
data pre-processing could take more than 60% runtime in
various heterogenous SoCs, as shown in Fig. 1. Unfortunately,
although many schemes have been explored to improve the
efficiency of standalone DNN accelerator [17-20], there has
been very limited optimization for end-to-end performance of
heterogeneous CPU + accelerator cores [21-23]. In [15, 23], the
accelerator coherency port (ACP) has been utilized to allow
accelerators to directly request data from CPU’s LLC and reduce
the data transfer cost. In [14], the RoCC interface has been
deployed for flexible and tight on-chip communication between
RISC-V cores and the customized BNN accelerator cores.

As a result of the significant design cost and utilization
challenges for the DNN accelerators, a recent survey shows that
the majority of mobile edge devices on the market are still
relying on CPU to perform machine learning inference, even

though there are dedicated accelerator or GPU designed inside
the SoC [24]. For resource-constrained devices, it is worthwhile
to evaluate the tradeoff between performance benefit and the
design cost for a dedicated neural network accelerator. It is also
critical to look for a new edge SoC architecture which could
offer both general-purpose CPU operation and ML inference
efficiently with high core utilization and sufficient flexibility for
programming.

Pipeline

Cache/RF

Host CPU

MAC Array Scratch
Pad

Ctrl.

NN Accelerator

Mem Ctrl.
Global MemGlobal MemGlobal MemGlobal Mem

Low Core Utilization:

CPU

NN

TimeIdle (NN waiting on CPU)

Pre-processing

classification classification
0%

20%

40%

60%

80%

100%

ISSCC'18
[2]

ISSCC'19
[3]

ISCA'17
[4]

NIPS' 18

CPU Pre-processing

Overhead > 60%

NN Classification

DMA

ISSCC 18

[12]

ISSCC 19

[13]

ISCA 17

[8]

NIPS 18

[22]

100%

80%

60%

40%

20%

0%

P
ro

c
e
s
s

in
g

 T
im

e

Fig. 1. Low core utilization in the conventional heterogeneous SoC.

In this paper, we propose a novel reconfigurable architecture
for resource constrained systems aiming to close the significant
design gap between general-purpose CPUs and neural network
accelerators. Comparing with the previous designs targeting to
improve the latency of core-to-accelerator communication [14-
15], our work explored a new architecture solution to realize
both the general-purpose CPU and BNN operations in a single
core obviating the need for a complex heterogeneous interface.
The benefit of such an architecture is to obtain not only cost
reduction for edge devices but also higher core utilization to
improve end-to-end performance. The proposed design has been
fabricated using a 65nm CMOS process and fully verified with
the operating voltage ranging from 1V down to the ultra-low
power regime of 0.4V. There are two major benefits obtained by
NCPU comparing with baseline heterogeneous architecture
including separate CPU and BNN accelerators. First, a single
NCPU core achieves a 35% area reduction and 12% energy
saving while maintaining the functionality and efficiency of
both baseline cores, rendering significant cost advantages in
resource-constrained edge devices. Second, with less than 3%
area overhead, a two NCPU cores SoC achieve core full
utilization while avoiding the ML task offloading. With that, a
43% end-to-end performance or equivalent 74% energy
improvement is obtained in real-time image and motion
detection demonstration use cases.

The contributions of this work are summarized as below:

• For resource-constrained edge devices, a novel NCPU

architecture is proposed to leverage the existing logic and

memories inside a neural network accelerator to recover the

capability of conventional CPU pipeline operations. As a result,

a NCPU core supports both ML inference and general-purpose

CPU computing with efficiency similar to the respective

architectures.

• The proposed NCPU architecture is designed to fully

support the 32-bit RISC-V Base ISA. A customized RISC-V

instruction set extension is developed to incorporate BNN

operations, data transferring and mode switching.

• A special zero-latency transition scheme is developed to

support seamless switching between CPU and BNN modes by

essentially pipelining the reconfiguration. Data can remain in

place while the core is reconfiguring thereby eliminating

transfer between CPU and accelerator.

• A two NCPU core SoC chip is designed and fabricated

using 65nm CMOS technology. Measured performance is

compared with baseline conventional heterogeneous design.

Real-life use cases for image classification and motion

detection are used to demonstrate the energy and end-to-end

benefits of the proposed architecture in the embedded system.

II. MOTIVATION AND DESIGN METHOD

A. Heterogeneous SoC for Edge Devices

As described above, the resource constrained embedded SoC
has extremely low power and cost budgets for various
applications, such as IoT devices. In these types of devices, the
total power budget for the computing activities is tens of mW or
less [53-54]. Conventionally, a CPU is implemented in
microcontrollers which can be programmed for various
embedded applications [53-56]. With the recent workload
requirements for machine learning applications, the support of
DNN operation becomes critical for embedded systems, with
various industrial products [10-13, 25-26].

To evaluate the benefits of the dedicated neural network
accelerator, we built a real-time use case for human motion
detection using the sensor data from Ninapro database [59]. In
this task, the CPU extracts features from the sensor data and then
perform a BNN inference with a 74% classification accuracy.
This use case has been tested on either an in-house designed
standalone RISC-V CPU or a heterogeneous design including
both CPU with a dedicated BNN accelerator.

The measured results from our prototype chip are listed in
Table 1. For the real-time application, there is a stringent real-
time latency requirement, i.e. 5ms, for each motion detection. It
is observed that standalone CPU requires 32ms for feature
extraction and BNN inference for a single motion detection and
fails to meet the latency requirement. With the help of the ASIC
BNN accelerator, the real-time latency and energy-efficiency
are improved by 59X to 0.54ms and 36X to 0.58uJ, respectively.
Therefore, for some real-time applications, a ML accelerator is
indispensable to improve performance as the standalone CPU
fails to meet the latency requirement.

TABLE I. MEASURED LATENCY AND ENERGY CONSUMPTION FOR A MOTION

DETECTION TASK WITH THE REAL-TIME LATENCY REQUIREMENT OF 5MS.

 Latency (ms) Energy (uJ)

Standalone CPU 32 21.12

CPU w/ BNN acc. 0.54 0.58

B. Design Challenges for Resource Constrained SoC

There are several design challenges for heterogeneous SoCs
including both CPU and ML accelerator for the resource
constrained embedded devices. First, the DNN accelerators are
expensive in many respects. For instance, in Intel’s 16nm ultra-
low power embedded SoC [10], the neural accelerator engine
consumes about the same area as the CPU core, delivering up to

1TOPS performance for the neural network. In Samsung’s 8nm
mobile SoC [11], the DNN accelerator has more than 2X larger
area than the host CPU and consumes 39mW even at 0.5V. For
the resource constrained embedded SoCs, the area and power of
DNN accelerators become the limiting factor for their adoption.

Second, CPU often dominates end-to-end performance
causing the DNN accelerator to be under-utilized. For example,
in Intel’s IoT edge SoC [12], the CPU operation for data pre-
processing takes about 70ms, while the classification of each
feature in CNN accelerator only takes 5ms. As a result, the CNN
accelerator utilization rate approaches 24%, while remaining
idle during the rest of the time, as shown in Fig. 1. Similarly,
Microsoft’s study also shows that the CPU data pre-processing
time could take 67% of runtime significantly impacting the end-
to-end performance [21]. In addition, the costly task offloading
from CPU to accelerator often becomes a performance
bottleneck limiting the overall improvement from accelerator
[23-24]. As implied by Amdahl's Law, the optimizations
focusing on standalone DNN accelerator is insufficient to
improve the performance of the whole system [27-28]. A novel
architecture design is needed to improve the end-to-end
performance for the resource-constrained devices.

C. Architecture Design Methodology in This Work

Recently, to close the architecture design gap between CPU
and ML accelerators, there are some CPU developments
particularly for ML tasks, such as the AMX unit in recent
Apple’s A13 CPUs [57], or other special in-pipeline support for
ML [58]. Some special heterogeneous interfaces, e.g. RISC-V
RoCC [14] or ACP [15], have been deployed to the SoC to
provide flexibility to accelerators for data transfer. With these
interfaces, the accelerators can directly transfer data to/from the
CPU caches. Therefore, the data transfer latency is much shorter
compared with the conventional DMA access to DDRs. In [16],
a flexible and efficient coherence interface is also proposed for
heterogeneous cores. However, such interfaces increase the
design complexity and consume additional area and power due
to complex asynchronous logic and communication protocols.

Different from the above approaches, to meet the low cost
and low power requirements of edge devices, this work proposes
a design approach that migrates CPU functionalities into an
ASIC accelerator design. We used a BNN accelerator as starting
baseline architecture which maintains the highest efficiency for
neural network inference. The CPU instruction support is then
added into the accelerator design to recover the general-purpose
computing with very small overhead. The benefit of such an
architecture is that it maintains the efficiency of accelerator
while still support CPU operation leading to a low cost and high
throughput architecture for embedded devices. Comparing with
the previous SoC design with heterogeneous interfaces [14-15],
the NCPU saves significant area cost for resource-constrained
devices by both reducing the required cores and avoiding
heterogeneous interface design.

It is worth mentioning that the challenges of bridging the
architecture design gap between CPU and accelerator vary with
the complexity of the baseline architectures. There is a widely
open architecture exploration space ranging from simple low-
end microprocessor and accelerator to more complicated multi-
thread CPUs and neural engines. Depending on different
baseline architectures, different architecture design

methodology might be needed to couple the heterogeneous cores
tightly, such as the RoCC interface used previously [14]. In this
work, partially due to the high cost of chip fabrication, we only
explored one extreme reconfigurable design for very low cost
energy scavenging edge devices. A large design space is yet to
be studied for many different application domains. We leave the
further exploration of the design space to our future work.
Despite of the limitation, to our best knowledge, this work is the
first silicon implementation for a reconfigurable architecture
which can efficiently operate and smoothly switch between
general-purpose CPU and neural network inference.

Ctrl.

Output-parallel

(a)

addr

In
p
u
t M

e
m

O
u
tp

u
t M

e
m

0

9

Weights Mem

W,B

(b)

W
A

+

B

8

S
ig

n

-1
/+

1

B
it

E
x

p
.

Out = sign(W×A+B)

Out

In
p
u

t

Neuron Cell

Fig. 2. (a) The baseline BNN accelerator architecture, (b) the hardware

implementation of multi-layer BNN, and the detailed design of neuron cell.

III. BINARY NEURAL NETWORK ON EDGE

The binarized neural network (BNN) has been proposed as
an attractive low-cost solution for low power embedded
applications. BNN constrains the weights and inputs to be only
+1 and -1, which significantly reduces the weight memory cost
with marginal degradation in accuracy [39]. In addition, the
multi-bit multiplier is replaced by a simple XNOR gate
rendering significantly smaller neuron cell design. Due to its
advantages in low cost and power consumption, BNN
accelerators gain tremendous popularity in chip demonstrations
for various embedded applications, such as image classification
[40-41], voice detection [42], etc. BNN has also been
implemented into low-power industrial products. For instance,
BittWare’s product is an industry example of using BNN on
FPGA showing 100X saving [43]. As BNN only has small
accuracy loss for simple tasks, e.g. 3% loss for MINIST, but
brings more than 10-100X lower cost and power compared with
DNN, it is a good compromise for ultra-low power IoT or edge
AI devices. Hence, we select BNN as the baseline of our neural
CPU architecture.

Fig. 2(a) shows the architecture of BNN accelerator used in
this work. Similar to the previous designs [40, 44], the input and
weight values are fetched directly from SRAM memory and sent
to the XNOR neurons. The output value of a single neuron is
shared with all the neurons at the following layer to increase the
data parallelism. The pipelined multi-layer BNN is built to
propagate the input from left to right through all the layers and
generate the final classification result at the last layer. The
registers in each neuron cell, as shown in Fig. 2(b), store the
intermediate input values for the next network layer. This is
analogous with conventional CPU pipeline operation, which
propagates different instructions in sequence all the way to the
last pipeline layer to commit. As a result, the depicted BNN
architecture resembles the existing pipelined CPU architecture
and brings about an opportunity to reconcile the two distinct
computing models. The selection of the neuron numbers of the

BNN accelerator needs to consider both the BNN model
accuracy and the size compatibility with the CPU core. In this
work, a 4-layer BNN accelerator with 100 neurons in each layer
is selected with consideration of the targeted embedded
applications and the RISC-V CPU pipeline constructions. The
selection of the baseline BNN topology will be further discussed
in Section 8.1.

IV. NEURAL CPU ARCHITECTURE

A. Neural CPU: A CPU Pipeline Emulator

For the target CPU model, we used open-source RISC-V
ISA, i.e. 32-bit Base Integer RV32I, which is highly suitable for
ultra-low power embedded edge devices due to its amenability
to a simple pipelined implementation, low power consumption
and high portability [45]. The proposed NCPU architecture
recovers the full functionality of the CPU pipeline on top of the
baseline BNN accelerator by reconfiguring the existing logic
and memory banks with small hardware overhead. As shown in
Fig. 3, a four-layer neural network is built as the baseline BNN
accelerator to intentionally match a 5-stage in-order RISC-V
CPU pipeline. For more than four layers of BNN, the output
layer results can be wrapped back to the first layer for the deeper
neural network. An in-house designed 5-stage in-order pipeline,
which is similar to the RISC-V Rocket core [46], is fused into
the BNN accelerator by modifying the data path and binary
neuron of every layer. As a result, a neural pipeline is built as a
hardware emulator of the RISC-V pipeline operation. The
detailed implementation at each neuron layer and their
reconfiguration capabilities are explained as follows.

Stage 1 - NeuroPC: Program Counter
Similar to the conventional CPU pipeline, the first neural

stage is used to perform the program counter (PC) for fetching
the incoming instruction. In most cases, the PC stage is only
performing “+4” operation, which is an ADD operation.
Therefore, 4 neuron cells are connected in series with the self-
feedback at the last neuron to realize “+4”. The existing adder
inside the neuron cell MAC is reused, with each neuron
generating 8 bits of the PC. For supporting branch address
generated from the following Execution stage, a mux is added
for branch taken operation.

Stage 2 - NeuroIF: Instruction Fetch
Part of the first neural layer is also reconfigured to emulate

the CPU’s IF stage. As the PC address is sent to the instruction
cache, the instructions are read out and stored. Therefore, the
neuron cells are reconfigured as bypass cells, which pass the
incoming values directly to the output. The registers inside the
neuron cells at the NeuroIF stage are reused to store the fetched
instructions, with only one additional mux to select the register
data source.

Stage 3 - NeuroID: Instruction Decode
The ID stage decodes instructions into partial codes such as

opcode, function code, register sources and destinations, etc.
The decode field is connected to the XNOR gate with the
original weights. To decode particular information, such as the
opcode, a group of neuron cells is combined to XNOR the
instruction field with the weights of neural network. As a result,
a mapping between the instruction ISA and decoded opcodes,
e.g. ADD, SUB is established using neural network operation.

Both the adder and registers inside the neuron cells are reused.
In addition, the ID stage also readout the operand values from
the register file and store them, which is similar to the bypass
cell at the NeuroIF stage.

Stage 4 - NeuroEX: Execution
The NeuroEX stage emulates different arithmetic or boolean

operations as a conventional ALU. Since only an adder and
XNOR gate exists inside the original BNN neuron cell,
hardware is added to recover the rest of ALU operations
including AND, OR, etc. The CPU operations that require
similar resources, e.g. ADD/SUB, LW/SW, are grouped and
mapped into the same neuron cells, to reduce unnecessary
activation of unused neurons. In addition, a multiplier is also
realized at the Execution stages based on existing “adders”
inside neurons. For some special CPU control data paths, such
as branch resolution and operand forwarding, these data paths
are implemented by the conventional digital design to minimize
the area overhead.

Stage 5 - NeuroMEM: Memory Access
The functionality of the NeuroMEM stages is mainly reading

or writing the data from/to the data cache. Hence, the neuron
cells propagate results similar to the NeuroIF bypass neurons.
Based on the opcode type, the read/write enable signals are sent
to the data cache for the memory operations, which will be
discussed in the next section. Following the NeuroMEM stage,
the computation results are written back to the register file and
the instruction is committed.

P
CIn
s
tr

Instr $ RF

R
s

OpA/OpB

Func

Op

Data $

W
r_

D

R
d

_
D

Forw ard

A
d
d

r

W
r_

D

NeuroPC/
NeuroIF NeuroID

PC[i]

Branch

PC[i]

W
A
B

+

Branch PC[i-

1]

Cout[i-1]

W
A
B

+

Cout[i]

PC[i-1]

32-bit Adder: EX Cell:

W
A

B

Boolean

Result[i]

Func

+

OpA[i]

OpB[i]

Bypass Cell:

Rd_D[i]

+

A
B

W

Rd_D[i]

Instr. Decoder:

W2

Instr[14]

W1

Instr[13]

W0

Instr[12]

Func

Func
add
sll
.. .

and

Func

Cout[i-1]

Wi

B

+

Instr[i]

Branch
PC

Im
a
g

e
 M

e
m

R
e
s
u
lt M

e
m

NeuroEX
NeuroMe

m

Neuro
WB

Instr
000
001
.. .

111

Fig. 3. Top-level architecture of the Neural CPU with its data path at each

pipeline stage.

37 RISC-V base instructions and 5 additional customized
instructions for BNN modes are supported in the NCPU. For
each supported instruction, we recover the required logic in the
baseline BNN accelerator stage by stage. For example, to
support the decoding of ADD (i.e. funct code 000) in RV32I, the
function field Instr[14:12] is XNOR-ed with an inversed neuron
weights W[2:0] value of 111 and summed together (i.e.

Instr[14]⊙W[2]+Instr[13]⊙W[1]+Instr[12]⊙W[0]) in a

three neuron cell group, as shown in Fig. 3(a). The output of this
decode neuron group will be asserted to low whenever there is
ADD decoded leading to addition operations at the following
NeuroEX stage. In NCPU, each instruction has its corresponding
decode neuron group to decode to the target ALU operations. By
reusing the existing XNOR and adders in the neuron cell, the
hardware overhead has been greatly limited. Besides, the weight
values are statically set in the CPU mode for different decoding
strategies and hence will not incur any power overhead from
memory access.

To support the control instructions, such as conditional
branch, some data paths which cross pipeline stages are also
recovered. For example, the branch target PC calculated at the
NeuroEX stage is wired back to the NeuroIF stage, as shown in
Fig. 3(a). If the branch is taken, the branch PC will be used as
the next fetch address. To resolve register data dependencies, the
data forwarding paths have also been added between NeuroEX
and its earlier stages. Recovering these crossing stage data paths
only requires simple digital multiplexers with low overhead. The
complete data paths under different operation modes are shown
in Fig. 4 (a). In NCPU, the NeuroEX stage needs the most design
modifications, i.e. most area overhead, to recover the full
functionality of the CPU ALU. The rest pipeline stages can
better reuse the existing BNN accelerator logic and incurs less
overhead. The unused neuron cells in the CPU operation mode
are clock gated to reduce the power overhead.

Instr.
$ (4kB)

Image
Mem
(4kB)

Seq.
Ctrl

Bias
Mem
(1kB)

W1 Mem
(25kB) BNN ModeW3 Mem

(6.5KB)

PC

P
C

_
b

ra
n

ch

Inst r

Register
File (1kb)

OpA/OpBR
F

_
a

d
d

r

Fun
c/Op add/

sub

lw/
sw

branc
h

RF_wr_d

D
$

_
d

D
$

_
a

d
d

r

Out
Mem
(1kB)

Seq.
Ctrl

Bias
Mem
(1kB)

CPU Mode

PC

P
C

_
b

ra
n

ch

Inst r

Register
File (1kb)

OpA/OpBR
F

_
a

d
d

r

Op/
Func

add/
sub

lw/
sw

branch

RF_wr_d

D
$

_
d

D
$

_
a

d
d

r

Data $
(1kB)

W2 Mem
(6.5KB)

W4 Mem
(6.5KB)

Instr.
$ (4kB)

Data
$ (4kB)

Data $
(6.5KB)

Data $
(6.5KB)

Data $
(25kB)

Data $
(6.5KB)

PC
IF

ID EX

MEM

WB

MUL

D
a
ta

 $

 W

 M
e

m

D
a
ta

 $

 I
m

a
g

e
 M

e
m

In
s

tr
 $

,
R

F

e
n

a
b

le
d

O
u

t M
e

m

 D

a
ta

 $
B

ia
s
, S

e
q

d

is
a

b
le

d

(a)

Weight
Addr.

W[31:0] W[k×N:k×N-32]W[63:32] D$_rd_dD$_wr_d

R
o
w

 #
:
N

en=0 en=1 en=0 en=0

Data Cache

D$
Addr.

Image
Addr.

Image Data

SRAM
Bank 1

SRAM
Bank 2

SRAM
Bank k-1

SRAM
Bank k

Addr. Arbiter

(b)
Fig. 4. (a) Memory and data path configuration schemes under BNN and CPU

mode, (b) the address arbiter design to support the memory reconfigurations.

B. Memory Reuse Scheme for Neural CPU

Beyond the reconfiguration of the core data path, to save the
memory area, the on-chip SRAM memory for the BNN
accelerator is also designed to be reused as data cache during
CPU operation. Fig. 4(a) shows the memory configuration
during both operation modes. In BNN mode, multiple SRAM
banks with 32-bit wide port are used to store all the BNN
weights and its input image data. Each neuron layer has a group
of memory banks to store all the weights and support wide
memory bandwidth. There is one dedicated image memory to
store the input values and one output memory to store the
classification results. The top-level sequence controller is used
to generate the unified SRAM address to all the weight memory
banks and the sequence control configurations to manage the
neural network process. During BNN mode, all the weight
memory banks are enabled to support the max image
classification throughput.

When switched to CPU mode, all weight memories and the
input/output image memories are reused as the data cache.
Separate instruction cache and register file are used to store the
instruction programs and some initial data. For the data cache
operation, an address arbiter is used to enable only one SRAM
bank out of all memory banks based on the target address for the
read or write operation, as shown in Fig. 4(b). The rest of the
unused memory are clock gated to remove the power overhead
from weight banks in BNN operation.

The reuse of SRAM banks for both operation modes can not
only significantly reduce the total memory capacity requirement
for dual operations but also allows CPU/BNN output data to be
stored locally without data transfer between the cores, which
make the task offloading much simpler. As a result, the cost of
data transfer among heterogeneous cores in the conventional
design is eliminated.

V. ZERO-LATENCY SWITCHING AND ISA SUPPORT

A. Zero-latency Switching Between Operation Modes

To establish the zero-latency mode transition between RISC-
V CPU operation and the BNN inference operation, a special
mode transition sequence with a series of customized
instructions is developed for the NCPU, as shown in Fig. 5. At
the beginning of task operation, the NCPU stays in CPU
operation mode to perform general-purpose computation, such
as data pre-processing, configuration calculation, etc. The
processed image data is stored into local image memory
(reconfigurable as the data cache), and the configurations for
accelerator operation stores into special designed transition
neuron cells. After completion of CPU pre-processing, the
NCPU switches to BNN mode and directly reads the processed
data from the image memory and proceed to the classification.
Similarly, after the image classification from BNN operation,
the NCPU can switch to CPU mode with the classification
results directly from the output memory reconfigured as data
cache.

For CPU to BNN mode transition, a customized RISC-V
instruction Trans_BNN is used to switch core operation mode
into BNN inference, as Fig. 5(b). To avoid the latency for BNN
inference, the weight values of the first neuron layer always
reside at one of the weight memory banks. Hence the image
inference can start immediately with the layer1 weights after the

mode switching, while the weights for the following neuron
layers are continuously loaded from the global memory to the
local weight SRAM at the same time.

For the BNN to CPU mode transition, the CPU initial data is
pre-loaded into data cache before the mode transition happens.
While the last image/task in BNN is being inferenced, the DMA
engine has acknowledged the upcoming completion of the BNN
task (as neural layer 1 is freed) and starts loading CPU initial
data from L2. Hence there is no additional latency incurred upon
switching to CPU mode. After the NCPU core switches back to
the CPU mode, fetch at the current PC resumes to enable the
post-processing of the image classification results.

To simplify the cache coherency for resource-constrained
devices, a simple software managed data transfer policy is
adopted for the NCPU. The developed software run code is
responsible for explicitly defining the cache lines that the
accelerator is going to read from and/or write to. For small size
neural network models, the weights only utilize a portion of
weight memory, with the unused weight memory and image
memory serve as the data cache for CPU. Hence, no dynamic
reconfiguration of SRAM is needed. For large size BNN models
with weights fully occupying the whole weight memory, the
data cache needs to be dynamically reconfigured into weight
cache due to the large model size. As a result, the weights need
to be loaded before transitioning into the BNN mode. For such
situations, the zero-latency switching scheme is developed to
hide the data transfer latency and performance impact during the
mode switching.

Data Cache

Global Mem

I
$

W1

Im
.

CPU Mode

Ctrl.

DMA

Global MemCtrl.

DMAW2 W3 W4

W1

Im
.

BNN Mode

Global MemCtrl.

DMAW2 W3 W4

W1

Im
.

Global MemCtrl.

DMAD $ W3 W4

CPU BNN: (preload small W1 before BNN execution)

BNN CPU: (preload D$ at the end of BNN execution)

(a)

CPU
Core

Activity: L1

Switch Instr.

L2

DMA
Activity:

Idle

Write DMA Load weights

BNN Mode
L3 L4

W3 W4

... L1 L2 L3 L4

first image

D$

Load D$ intials

D$

CPU

W1 W2

W1 no use

D$ D$

last image

Switch mode

(b)

Runtime

trigger

 lw lw a
d

d
i

S
w

_
L

2
a

d
d

i
..

.

Pre-processing

Configurations Post-processing

0000 0000 0000

31 19

rs1 000

14

rd

11

1110011

6

NCPU ISAsource2=0 source1 Trans
Neuron #

• Mv_Neu

11

31 29

xx 1110011

6

NCPU ISASwitch
• Trans_BNN

Imm[11:5]

31 24

rs2 000

14

Imm[4:0]

11

1110011

6

NCPU ISAsource base immediate

• Sw_L2
19

rs1

(c)

..
.

a
d

d
i

s
u

b
a

d
d

i
lw b

lt
a

d
d

s
w
 lw s

rl
a

d
d

i
s

ll
M

v
_

N
e
u

 T
ra

n
s
_

B
N

N
..

.

BNN Inference

Assembly Code Example:

Customized RISC-V Extension:

Fig. 5. (a) Operation mode switching with special data pre-loading sequences
to achieve zero latency, (b) the assembly code example during the workload

runtime, (c) the example of customized RISC-V instruction extension to

support NCPU.

B. Customized RISC-V Extension

RISC-V is suitable for ultra-low power embedded edge
devices and also supports flexible customized instruction
extensions for special purposes. In our work, a series of
customized instructions are developed and embedded inside the
RISC-V ISA to support special NCPU operations and the mixed
mode programming. In general, the last 7 bits of the instruction
field are modified to indicate the customized NCPU instructions.
Some instructions are introduced as following and in Fig. 5(c).

1. Mv_Neu: move the designated register file values to the

special design transition neuron located in each neural

layer. The transition neurons are the configurations, e.g.

model size, for the neural network operations.

2. Trans_BNN: trigger the operation mode of the NCPU core

from CPU mode to BNN mode. The instruction will send

a special trigger signal to the bus controller, which contains

the core mode state.

3. Sw_L2, Lw_L2: two special write-through instructions for

the data to be stored or loaded directly between the NCPU

core and the global L2 memory.

4. Trigger_BNN: a special instruction used to trigger the

BNN accelerator core operation. This instruction is

designed to operate as the conventional heterogeneous

architecture for evaluation purposes.

In addition to the above instruction extensions, there are
several special transition neuron cells built at each neural layer
to support temporal data storage for the operation mode
switching. The instruction Mv_Neu can store the calculated
configuration values e.g. run cycles of each neural network
layer, to these transition neuron cells during CPU mode. After
the operation mode switched to the BNN inference, the
transition neuron values are directly taken as the neural network
configurations. This transition neuron cell design enables
flexible management using CPU instructions for the following
BNN operations.

VI. NCPU CHIP IMPLEMENTATION AND PERFORMANCE

EVALUATION

A. Neural CPU Chip Design

To demonstrate the benefits of both single-core and dual-
core configurations, we implemented a two-core design of
NCPU, as the top-level SoC architecture shown in Fig. 6. A
global memory is shared by two NCPU cores. The memory can
serve functionally as an incoherent L2. Each core can access the
L2 memory via new customized RISC-V load/store instructions
which perform write-through behavior for stores. A DMA
engine is designed to manage the data communication between
the NCPU cores and the L2 memory. During the workload
operations, these two NCPU cores can operate independently for
different workload tasks, e.g. CPU programs or classify different
images, or operate cooperatively, e.g. form a deeper neural
network accelerator by connecting these two NCPU cores in
series. We compared the NCPU design with baseline
conventional CPU + BNN architecture showing two major

benefits: (1) a single NCPU can obtain 35% area reduction and
12% energy saving at 0.4V, (2) two NCPU cores scheme can
achieve 43% end-to-end performance improvement or
equivalent 74% energy saving by maintaining both cores at full
utilization.

DMA

Data Bus

Neural CPU0

Weight (BNN)

Image (BNN)

D. $ (CPU)

Bias
(BNN)

I. $
(CPU)

RF
(CPU)

Neural CPU1

Shared L2 Mem GPIO PLLConfig.

Seq.
(BNN)

SRAM domainCore domain

Weight (BNN)

Image (BNN)

D. $ (CPU)

Bias
(BNN)

I. $
(CPU)

RF
(CPU)

Seq.
(BNN)

Always-on domain
Fig. 6. The top-level architecture of the NCPU chip.

Technology

Die Area

BNN Power

Frequency

Nom Vdd

65nm CMOS

2.8mm
2

241mW

960MHz

1V

CPU Power 112mW

2.2mm

1
.3

m
m

NCPU0 NCPU1
PLL Scan

DMA

L2
SRAM

L2
SRAM

W1 (BNN)
D$ (CPU)

I$

I$

W2-W4 (BNN)
D$ (CPU)

W2-W4 (BNN)
D$ (CPU)

W1 (BNN)
D$ (CPU)

BNN Power
(2core) 446mW

SRAM 128KB

Fig. 7. Fabricated die photo and the chip specifications.

FPGALaptop
Test
Chip

Power
Supply

Oscilloscope

Package QFN48

Power Domains

Nom. Voltage

IO Voltage

6

0.4~1V

1.8V

Test Chip

Fig. 8. Chip measurement setup for the use cases.

B. Chip Specifications and Measured Performance

The two-core NCPU test chip has been fabricated in TSMC
65nm GP CMOS technology. The chip die photo and the design
specifications are shown in Fig. 7. Two identical NCPU cores
have been implemented on chip. The nominal operating
frequency for the NCPU core is 960MHz at 1V. The overall
active die area is 2.86mm2. The test chip measurement setup is
illustrated in Fig. 8. The test chip is packaged by a QFN package
and mounted on a PCB board. Altera DE-2 FPGA which
communicate with a laptop is used as the interface to chip for
the data communication. During the workload operations, the
data is first transferred from FPGA to the on-chip global L2
cache, which is then accessed by the cores. The transient power
traces for each core were measured to monitor the core activities.

To apply NCPU design for ultra-low power applications, the
chip performance and energy consumption for different modes
have been measured across a wide supply voltage range down to
0.4V, as shown in Fig. 9. The chip’s functionality has been
verified by reading out all internal RF and memories after the
benchmark run. At 0.4V, the NCPU core can operate correctly
at frequency 18MHz, with the power consumption of only

1.2mW for BNN inference and 0.8mW for CPU operations,
which is significantly lower than that in Intel’s Movidius [10]
and other commercial microcontrollers [53-56], as shown in
Table 2. The minimum energy point (MEP) for CPU mode is
observed at 0.5V, with the leakage power dominating below it.
Due to the larger portion of dynamic power for the BNN
inference, its MEP point is not observed before a malfunction is
observed below 0.4V. The computing efficiency for BNN across
voltages is also measured showing 1.6TOPS/W at 1V and a peak
efficiency of 6.0TOPS/W at the voltage of 0.4V.

0

60

120

180

240

300

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

P
o

w
e

r
(m

W
)

Voltage (V)

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
re

q
u

e
n

c
y
 (

M
H

z
)

Voltage (V)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
E

n
e

rg
y
 (n

J
)

Voltage (V)

0

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

B
N

N
 T

O
P

S
/W

Voltage (V)

BNN

CPU

Power Consumption Operating Frequency

Energy Consumption BNN Performance
(a) (b)

(c) (d)

P
o

w
e
r

(m
W

)

F
re

q
u

e
n

c
y
 (

M
H

z
)

E
n

e
rg

y
 (

n
J

)

E
ff

ic
ie

n
c
y
 (

T
O

P
S

/W
)

BNN

CPU

6.0TOPS/W

Fig. 9. The measured (a) power, (b) frequency, (c) energy consumption, and

(d) power efficiency versus supply voltage for both BNN and CPU modes.

TABLE II. COMPARISON WITH COMMERCIAL MICROCONTROLLERS [53-56].

 [53]
Microchip

[54]
TI

[55]
Microchip

[56]
SiFive

NCPU
(CPU mode)

Datapath 8b 32b 32b 32b 32b

CPU RISC ARM ARM RISC-V RISC-V

Pipe Stage 2 3 8 5 5

Vol. (V) 3 3 1.26 1 0.4-1

Freq (MHz) 64 48 600 250 18-960

Power (mW) 37.2 22.8 229 150 106 (1V)

0.8 (0.4V)

Performance
(DMIPS/MHz)

0.25 1.22 1.57 1.61 0.86

Efficiency
(DMIPS/mW)

0.43 2.57 4.11 2.68 8.26

TABLE III. COMPARISON WITH STATE-OF-THE-ART ML ACCELERATORS.

 [2]
ISSCC’17

[44]
ISSCC’19

[40]
JSSC’18

[41]
ISSCC’18

NCPU
(BNN mode)

Process 28nm 65nm 65nm 28nm 65nm

NN Model FC FC FC Conv. FC

Datapath 8b 8b 1b 1b 1b

Dataset MNIST MNIST MNIST CIFAR-

10
MNIST

Accuracy 98.36 98.06 90.1 86.05 94.8

Vol. (V) 0.9 0.8 1 0.8 0.4-1

Freq (MHz) 667 20 400 10 18-960

Power (mW) 33.7 23.6 0.6 0.9 241 (1V)

1.2 (0.4V)

Efficiency
(TOPs/W)

1.2 3.42 6.0 532 1.6 (1V)

6.0 (0.4V)

Table. 2 compares the performance of RISC-V CPU mode
in NCPU with other commonly used commercial embedded
microprocessors. The NCPU is able to run at 18MHz at 0.4V for
ultra-low power applications, which is in line with other
embedded microcontrollers. Due to low power consumption, the
core efficiency of our design is in fact higher than the designs

for standard Dhrystone benchmark run. Table. 3 shows the
comparison with several previous state-of-the-art ML inference
accelerators. The work in [2] is conventional heterogeneous
architecture which requires both the host ARM CPU and a
specialized DNN accelerator to support the fully connected
neural network. Work [44] is adopting similar neuromorphic
accelerator architecture with our work using the fixed 8-bit data
path. Comparing with the state-of-the-art standalone BNN
accelerators [40-41], the BNN operation mode of NCPU
achieves a peak 6.0TOPS/W power efficiency at 0.4V, which is
similar to [40].

C. Benefit and Overhead Evaluation

To evaluate the design overhead for the proposed NCPU, we
compare the area, power, speed between the proposed NCPU
core with a standalone RISC-V core and a standalone BNN
accelerator. The baseline standalone CPU core is an in-house
designed single-cycle 5-stage RISC-V pipeline, which has the
identical functionality and IPC as the CPU operation in NCPU.
The baseline BNN accelerator has 4 layers (100 neurons/layer),
which has the same number of neurons as the NCPU. The PPA
of the standalone CPU/accelerator cores are evaluated using the
final physical design after logic synthesis and place & route.

Fig. 10 shows the area overhead of the NCPU core excluding
SRAM and the overhead of the whole NCPU including SRAM.
Comparing with the baseline BNN core, the area cost for
realizing the NCPU pipeline stages excluding memory is 13.1%.
Including both core and the SRAM memories (i.e. including the
register file, instruction cache, weight memory, etc.), the overall
area overhead of the NCPU design is only 2.7%. Comparing
with a standalone BNN or a CPU core, the performance of the
NCPU, i.e. maximum operation frequency, degrades only 4.1%
and 5.2% for the two operating modes, respectively.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

BNN Neural
CPU

CPU Neural
CPU

M
a

x
 F

re
q

 (G
H

z
)

4.1%

BNN Mode

5.2%

CPU Mode

0%

3%

6%

9%

12%

15%

18%

Core Total

A
re

a
 O

v
e

rh
e
a
d

 (
%

)

NeuroPC
NeuroIF
NeuroID
NeuroEX
NeuroMEM

13.1%

2.7%

1.15

1.10

1.05

1.00

0.95

0.90

0.85

Fig. 10. The area and performance overhead of NCPU comparing with

standalone CPU or BNN accelerator core.

The power overhead evaluation is reported from dynamic
power analysis by PrimeTime based on the cycle-by-cycle gate
level simulation. The power consumption of the proposed
NCPU is compared with a single standalone BNN accelerator,
or a 5-stage RISC-V pipeline core design. Fig. 11(a) shows the
comparison of power consumption. During BNN operation
mode, the proposed NCPU consumes 5.8% more power than the
standalone BNN accelerator for MNIST dataset inference due to
the extra inserted CPU logic. For CPU operations, multiple
embedded programs from the MiBench benchmark suite have
been tested [47], which shows about 15% more power cost than
a single CPU core. Fig. 11(b) also compared the power
consumption for all supported RISC-V base instructions
individually. An average of 14.7% more power is consumed for
various instructions. The extra power cost mainly comes from

the dynamic power of some ungated original logic inside each
neuron cell.

Although there are small hardware overheads between the
NCPU and the standalone CPU or BNN core, the NCPU can
achieve the area saving and energy reduction benefits when
comparing with the conventional heterogeneous architecture.
Fig. 12 compares the area among standalone RISC-V CPU core,
standalone BNN accelerator and the NCPU. Comparing with the
heterogeneous architecture including both CPU and BNN
accelerator, a NCPU achieves 35.7% area reduction while
maintaining the same functionality. The area saving is just one
benefit of our reconfigurable NCPU architecture. As shown
later, significant end-to-end performance gain (or equivalent
energy saving) can also be obtained, addressing the often
overlooked core under-utilization issue in conventional
heterogeneous architecture.

As shown in Fig. 12(b), the reconfigurable design leads to
7.2% energy overhead of NCPU comparing with baseline
heterogeneous cores at 1V for a MNIST inference task.
However, as the leakage energy starts to dominate total energy
consumption at ultra-low voltages, the area saving starts to
convert to an energy saving below 0.6V and achieves 12.6%
energy saving at 0.4V for the image inference task.

Neural CPUCPU

b
e

q

lu
i

a
n

d

x
o

r

ja
r

b
lt

b
lt
u

lb lw lh
u

s
h

a
d

d
i

s
lt
i

x
o

ri

s
ll
i

s
ra

i

a
d

d

s
lt

s
ra

lu
i

a
u

ip
c

ja
l

ja
lr

b
e

q
b

n
e

b
lt

b
g

e
b

lt
u

b
g

e
u lb lh lw lb
u

lh
u

s
b

s
h

s
w

a
d

d
i

s
lt
i

s
lt
iu

x
o

ri
o

ri
a

n
d

i
s
lli

s
rl

i
s
ra

i
a

d
d

s
u

b s
ll

s
lt

s
lt
u

x
o

r
s
rl

s
ra o

r
a

n
d

(b)

Avg.: 14.7%

N
o

rm
a
li
z
e
d

 P
o

w
e
r

N
o

rm
a
li
z
e
d

 P
o

w
e
r

Neural CPUBNN Acc. CPU

B
N

N
 O

p
e

ra
ti
o
n

C
P

U
 O

p
e

ra
ti
o
n5.8%

BNN

15.2% 14.7% 15.1% 14.7% 13.7% 14.8%

(a)

Fig. 11. (a) Power consumption comparison for both BNN acceleration mode
the CPU operation mode, (b) power consumption overhead for the supported

RV32I instructions.

0

0.2

0.4

0.6

0.8

1

BNN CPU BNN+CPU Neural
CPU

A
re

a
 (
m

m
2
)

Compute SRAM

2.5

2.0

1.5

1.0

0.5

0.0

35.7%

2.7%

-10%

-5%

0%

5%

10%

15%

20%

10.90.80.70.60.50.4

E
n

e
rg

y
 S

a
v

in
g

Voltage (V)

(b)

12.6%

-7.2%

(a)

Fig. 12. (a) Area reduction and (b) energy saving benefit of the Neural CPU.

VII. END-TO-END IMPROVEMENT OF REAL-TIME USE CASES

A. Benefit of Maintaining Full Utilization of Cores

The proposed NCPU architecture can maintain full
utilization of the cores by smoothly switching the operating
modes with zero-latency. Hence the end-to-end performance is
improved by eliminating any idle time within the cores. Fig. 13
illustrates the end-to-end performance improvement by
maintaining full utilization of cores for an image classification
use case. During the experiment, the execution latency of the
image BNN inference maintains the same. The fraction of the
CPU workload, i.e. the CPU run cycles over the sum of CPU
and BNN run cycles, is adjusted by changing the complexity of
the image data pre-processing algorithms. For the workload with
a high fraction of CPU operations, e.g. 70%, the NCPU
architecture improves the overall end-to-end performance by
41.2% compared to a baseline heterogeneous architecture. For a
well-balanced workload between CPU and BNN accelerator,
e.g. CPU workload fraction of 40%, the NCPU still shows an
improvement of 28.5%. Therefore, significant end-to-end
performance improvement can be obtained by resolving the core
under-utilization issue.

The end-to-end performance benefit has also been further
evaluated with different batch sizes, e.g. the number of images,
under the CPU workload fraction of 70%, as shown in Fig. 14.
Large batch sizes help heterogeneous architecture to hide the
data transfer latency and obtain higher end-to-end performance.
Therefore, NCPU gains a little less end-to-end benefit with
larger image batch size while still maintaining above 37%
latency improvement with the batch size of 100.

Im.1 IdleIm.2

Idle Image1

Image2

Im.1

Im.2

Image1

Image2

Time

B
a
s

e
li
n

e
N

C
P

U

28.5%

Image1 IdleImage2

Idle
BNN:

CPU:

Im.1

Image1

Image2

Im.1

Im.2

NCPU0:
Time

B
a
s

e
li
n

e
N

C
P

U

41.2%

Idle Im.1

NCPU1:

BNN:

CPU:

NCPU0:

NCPU1:

(a) (b)

40% 60% 70% 30%
CPU operation BNN operation Idle

Fig. 13. The core utilizations during runtime under the CPU workload fraction

of (a) 40% and (b) 70%.

30%

33%

36%

39%

42%

45%

2 6 10 20 50 100

B
e

n
e

fi
t

Image Batch Size

P
e

rf
o

rm
a
n

c
e

Im
p

ro
v
e

m
e

n
t

(%
)

Fig. 14. The end-to-end performance benefit with sweeping of image batch size

under the CPU workload fraction of 70%.

B. Real-Time Use Cases

To evaluate the real end-to-end performance gain for
embedded applications, two real-time use cases have been
evaluated on the test chip. There is a lack of established
benchmarks for evaluating real-time ML end-to-end
performance in low power devices. Consequently, we
constructed two real-life embedded use cases, including image
classification and human motion detection.

Fig. 15 shows the workload breakdown of the CPU
processing and BNN inference in the test cases. For the image
classification use case, the CPU operation takes a batch of raw
image pixel data (size: 224x224x3) and conducts several image
processing functions, including image resizing, grayscale
filtering, and data normalization [48-49]. These are common
image processing algorithms required before the neural network
classification [50]. After the raw image data has been processed,
the NCPU core switches from CPU mode to the BNN mode to
perform the image inference. The BNN model is trained using
MNIST dataset achieving the classification accuracy of 94.8%.
The CPUs operations take about 76% of the total runtime, which
is similar to the study case from Intel’s IoT SoC [12]. It is worth
mentioning that the data pre-processing tasks are normally
managed by separate image signal processor (ISP) in modern
mobile SoCs [51-52]. However, in ultra-low power embedded
SoC, ISP is not an indispensable IP and CPU processes the
majority of the general-purpose computing tasks.

For the human motion detection test case, the BNN model is
trained using the recorded accelerometer sensor data from
Ninapro database [59], with 74% classification accuracy for
simple motion activity detection. Six out of twelve channels of
the accelerometer sensor signals were used in our study. Three
time-domain features including mean and histogram for each
channel were used for BNN classification [60]. The CPU
operation is dominated by the feature extraction tasks and shows
a workload fraction of 68%.

As our design target is for resource-constrained low power
embedded applications, the use cases have been tested on chip
with the operating frequency of 50MHz, which is in line with
other commercial microcontrollers’ speed [53-54]. For the
human motion detection use case, only a single human gesture
is detected and classified due to the slow human motion time
scale in real-time applications.

sEMG sensors Feature Extract
(CPU)

NN Inference
(BNN)

Histogram, mean, etc.

Human
Motion

(c)

BNN

Resize

Grayscale
Filter
Normalization

BNN
(24%)

CPU
(76%)

1. Resize
(30%)

3. Norm.
(12%)

2. Greyscale
Filter (32%)

(a)

BNN

mean

historam

BNN
(32%)

CPU
(68%)

1. Mean
(22%)

2. Hist.
(46%)

(b)

Fig. 15. Runtime CPU and BNN workload breakdown for the use cases of (a)
image classification, (b) motion detection, and (c) the real-time task operation

sequence for the motion detection case.

C. End-to-end Improvement Results

To evaluate the end-to-end performance improvement, the
use cases were tested on both baseline heterogeneous
architecture, i.e. CPU core with BNN accelerator, and our
developed two-core NCPU SoC. Fig. 16 shows the measured
power traces during the runtime of the image classification use
case under the NCPU peak performance. For the baseline
heterogeneous architecture, the BNN core stayed idle at the
beginning and waited for the CPU data pre-processing tasks to
complete. The BNN accelerator was launched for the image
inference only after received the processed data, and the CPU
continued to process the pixel data for the second image. For the
NCPU two-core configuration, both NCPU cores were
reconfigured into CPU mode at the beginning to process two
images simultaneously. After image processing completed, both
NCPUs were switched for BNN inference. As the core
utilization rate summarized in Table 4, comparing with the
baseline configuration, i.e. CPU+BNN, NCPU SoC can
maintain utilization more than 99% runtime. Therefore, for the
same image classification task, the real-time end-to-end
performance achieves a 43% speed up due to the reconfiguration
of NCPU maintaining core full utilization.

Fig. 17 shows the end-to-end performance improvement for
the two use cases. With the significant improvement of the core
utilization, i.e. realizing both cores at almost 100% utilization,
the end-to-end performance of two-core NCPU scheme shows
35% to 43% improvement comparing with the conventional
heterogeneous architecture. Comparing the baseline
heterogeneous architecture, the area of single NCPU is saved by
35%, while the overall end-to-end performance is only degraded
by 13.8%. Therefore, a single NCPU core can achieve
significant area saving benefit with small end-to-end
performance loss. The obtained end-to-end performance
improvement can be equivalently converted to energy saving,
which is highly demanded for the low power embedded
applications. To obtain the energy saving, the supply voltage
was scaled down while maintaining the same total execution
latency. The achieved performance improvement for the image
use case is converted into up to 74% energy saving under lower
supply voltage. Note that the power tracing was performed at
1V so that the core activities can be easier distinguished due to
high power consumption. The same performance benefits can
be observed at 0.5V.

-20

0

20

40

60

80

100

-5 5 15 25 35 45 55 65 75 85

-20

0

20

40

60

80

100

4 14 24 34 44 54 64 74 84 94

CPU + BNN:

Image1&2

Image1 BNN

CPU

Image2

43%

P
o

w
e
r

(m
W

)

NCPU1

NCPU0

Time (us)

0 10 20 30 40 50 60 70 80 90

40

0

80

120

160

200

40

0

80

120

160

200

2 NCPUs:

P
o

w
e
r

(m
W

)

Resize
Greyscale

Filter Norm. Resize
Greyscale

Filter Norm.

Resize
Greyscale

Filter Norm. Resize
Greyscale

Filter Norm.

CPU BNN CPU BNN

Fig. 16. Measured power traces for image classification use case.

TABLE IV. THE CORE UTILIZATION RATES AT THE BASELINE

HETEROGENEOUS SOC OR NCPU SOC CONFIGURATIONS.

Mode/Utilization NCPU 0 NCPU 1

Baseline CPU / 80.2% BNN / 39.4%

2 NCPUs NCPU / 99.3% NCPU / 99.3%

0

0.5

1

1.5

2

2.5

3

Image Motion

N
o

rm
a

li
z

e
d

L
a

te
n

c
y

1 NCPU CPU+BNN 2 NCPUs

N
o

rm
a

li
z
e

d

L
a

te
n

c
y

43%

13.8%

B
a

s
e

li
n

e

35%
1.8%

Fig. 17. Fig. 16 End-to-end performance improvement for two use cases.

VIII. DISCUSSION AND RELATED WORK

A. Baseline Accelerator Selection

In this work, the neuromorphic type BNN accelerator design
[40, 44] is selected as the baseline architecture. The neuron cell
design and their connections are analogous to the conventional
CPU pipeline, which makes the reconfigurable NCPU design
natural and low overhead. BNN architecture is chosen as it is a
good compromise for low-power applications and matches well
with the low-cost CPU. The selection of baseline BNN
accelerator size needs to consider both the BNN model accuracy
and the size compatibility with the CPU core. More neural
network layers or neuron cells in each layer will increase both
the model accuracy and area. Fig. 18 shows the area saving
benefit and BNN inference accuracy with different neuron cells
per layer. For different neural network sizes, i.e. neuron cell per
layer varying from 50 to 400, the classification accuracy of the
MNIST dataset can change from 88.6% to 97.2%. The area
saving benefit of the NCPU compared with the conventional
heterogeneous architecture reduces to 22.5% with the use of 400
neurons. The tradeoff between the BNN inference accuracy and
the area saving benefit leads to our design choice of 100 neuron
cells per layer with a moderate BNN accuracy of 94% for
MNIST database. In our NCPU SoC, deeper BNN with more
layers can be supported by rolling back the BNN operation or

connecting two cores in series. Smaller BNNs are supported by
configuring NCPU layers using the developed ISA.

One of the main targets for this work is to explore a new
computing architecture to close the significant performance gap
between neural network accelerator and conventional processor
design for ultra-low power embedded devices. There is a
significant architecture design space that can be further
explored. Supporting multi-bit and complex DNN is definitely a
future research direction. In fact, it may be easier to reconfigure
a larger DNN accelerator into CPU pipelines due to the abundant
hardware resources. But to better utilize the hardware resources
of DNN, the reconfigured CPU pipeline will also be preferably
scaled up into vector processing, SIMD, superscalar pipeline or
multi-core. We hope our preliminary work here can inspire more
development in this direction in the future.

It is worth mentioning that similar reconfigurable NCPU
architecture also can be implemented on FPGAs. However, due
to the large resource consumption of FPGA, it will entail orders
of magnitude greater power overhead than the ASIC
implementation in this work. For the resource-constrained edge
devices, our NCPU design can provide lower cost and better
power consumption than FPGA solutions.

84%

87%

90%

93%

96%

99%

0%

10%

20%

30%

40%

50%

64 128 256 512

A
c

c
u

ra
c

y
 (
%

)

A
re

a
 S

a
v

in
g

 (
%

)

Neuron Cells per Layer

50 100 200 400

43.5%
35.7%

30.6%
22.5%

This
Design

Fig. 18. Area saving with different accelerator size.

B. Prior Related Work

The motivation of this work is to explore a new architecture
solution to reconcile the difference between the conventional
CPU microprocessor and the popular neural network accelerator
in cost and power constrained systems. Previously, in-memory
computing is utilized to bring neural network computation
inside the memory storage to reduce the data transfer cost [29-
30]. A more recent in-memory computing scheme further
supports flexible ALU instructions, e.g. addition, subtraction
and the multiplications, in SRAM [31]. However, the support of
highly programmable general-purpose computing is still
challenging for those in-memory computing schemes.

To improve the heterogeneous design, several CPU-
accelerator interfaces have been studied and adopted in
heterogeneous SoC to couple the cores tightly and reduce the
workload offloading cost [14-16]. For example, the RoCC
interface is adopted for communicating data between the RISC-
V CPU caches and the BNN accelerator. Comparing with [14],
our work proposes a different reconfigurable architecture
solution to solve the offloading challenge and avoid the
complicated heterogeneous interface designs. Our evaluations
do not consider the area/power overheads of the RoCC interface
which will add to the overheads of the CPU+BNN baseline.

There is also a research effort by Google trying to use the
neural network to perform CPU operations. “Neural Turing
Machine” is a representative work to use neural network to
perform CPU operations, e.g. copy, sorting or complex query

problems [32-33]. Similar memory augmented neural networks
have been studied for cognitive operations [34-35]. A “neural
arithmetic logic units (NALU)” architecture is proposed by
Google in which a neural network is trained to perform some
basic arithmetic operation, e.g. ADD, SUB, or MUL [36]. The
above designs still remain at concept level with software
implementation to date. As illustrated by our experiment in
following, the cost of NALU is prohibitively high comparing
with conventional digital design approach and hence is not
suitable for a resource constrained SoC.

C. NALU Architecture Experiment

Previously, the concept of “Neural ALU” was proposed to
train a neural network to learn and perform several basic
arithmetic operations, e.g. ADD or MUL [36]. However, the
prior study was only at conceptual level (software) and did not
fully consider hardware cost. We evaluated the NALU concept
from a hardware perspective and compare it with the
conventional digital approach in term of power, area, etc. The
NALU is a two layers fully-connected neural network, which
can be trained using back propagation for 8-bit ALU operations,
such as ADD, SUB, AND, XOR, with the mean squared error
(MSE) as a cost function for back propagation. MSE error is
scaled relative to a random initialized model, i.e. 100% is
equivalent to random and 0% is perfect accuracy. As shown in
Fig. 18(a), the NALU architecture performs well to learn
ADD/SUB operation, while suffers from significant error for
Boolean operation AND/XOR. When realizing both ADD and
SUB simultaneously, NALU output almost become random for
these ALU operations leading to training failure. Further
experiments show that the output error can be gradually reduced
with more hidden layers or neurons. However, given the single
hidden layer architecture already causes significant design
overhead as will be shown in the following, adding more hidden
layers or neurons will make the hardware implementation
infeasible. Therefore, results with only single hidden layer
architecture will be shown here, which is same as [36].

The area and power cost of the implemented NALU are
compared with the conventional digital implementation
approach using TSMC 65nm process, as shown in Fig. 18(b).
The post-layout result shows the NALU implementation for
ADD cost about 17X area than a digital adder. The significant
NALU area cost is due to the multiplication tasks for simple
ALU operations such as ADD or AND in NALU architecture,
which is very area and power costly. The neural network also
requires large capacity of memory to store all the model weights.
All these large area costs translate to significant cost in power
consumption. Based on NALU experiment results, we
understand that a straightforward implementation of neural
network for CPU operations is not realistic for energy efficient
implementation. However, these observations lead to the design
approach of our NCPU architecture.

0%

20%

40%

60%

80%

100%

N
o

rm
a

li
z
e

d
 E

rr
o

r

0

10

20

30

40

50

60

N
o

rm
a
li
z
e
d

 E
rr

o
r

(%
)

(a)

Random

17X 15X

35X
32X

13X

N
A

L
U

 A
re

a
 /
 D

ig
it

a
l

14X

(b)

Fig. 19. (a) The normalized error when NALU learns different ALU
operations, and (b) NALU area cost comparing with the conventional digital

design approach.

IX. CONCLUSION

In this paper, we propose a reconfigurable Neural CPU,
which is a novel architecture suitable for ultra-low power
applications with significant cost reduction and performance
improvement. The proposed NCPU core supports the flexible
programmability of RISC-V CPU as well as BNN inference
acceleration. A NCPU SoC test chip was fabricated in a 65nm
CMOS process. Compared to a conventional heterogeneous
design, a single NCPU core achieves 35% area reduction and
12% energy saving. With two NCPUs, the overall end-to-end
performance achieves up to 43% performance improvement for
two real-time use cases demonstrated on the test chip.

REFERENCES

[1] D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, Y. Kim, G.
Kim, P. Pannuto, Y.-S. Kuo, D. Yoon, W. Jung, Z. Foo, Y.-P. Chen, S.

Oh, S. Jeong, and M. Choi, “IoT Design Space Challenges: Circuits and

Systems”, Symposium on VLSI Technology, 2014.
[2] P. Whatmough, S. Lee, H. Lee, S. Rama, D. Brooks, and G. Wei, “A 28nm

SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine

with >0.1 timing error rate tolerance for IoT applications”, International
Solid-State Circuits Conference (ISSCC), pp. 242-243, Feb. 2017.

[3] M. Hempstead, N. Tripathi, P. Mauro, G. Wei, and D. Brooks, “An ultra

low power system architecture for sensor network applications”,
International Symposium on Computer Architecture (ISCA), pp. 208-219,

2005.

[4] S. Sridhara, M. DiRenzo, S. Lingam, S. Lee, R. Blazquez, J. Maxey, S.
Ghanem, Y. Lee, R. Abdallah, P. Singh, and M. Goel, “Microwatt

embedded processor platform for medical system-on-chip applications”,

IEEE Journal of Solid-State Circuits (JSSC), vol. 46, no. 4, pp. 721-730,
Apr. 2011.

[5] Y. Shi, M. Choi, Z. Li, G. Kim, Z. Foo, H. Kim, D. Wentzloff, and D.

Blaauw, “A 10mm3 syringe-implantable near-field radio system on glass
substrate”, International Solid-State Circuits Conference (ISSCC), pp.

448-449, Feb. 2016.

[6] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for ubiquitous

machine-learning”, International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pp. 269-
284, Mar. 2014.

[7] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-

efficient dataflow for convolutional neural networks”, International
Symposium on Computer Architecture (ISCA), pp. 368-379, Jun. 2016.

[8] N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S.

Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C.
Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. Ghaemmaghami,

R. Gottipati, W. Gulland, R. Hagmann, C. Ho, D. Hogberg, J. Hu, R.
Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,

D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C.

Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M.
Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T.

Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A.

Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D.
Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V.

Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. Yoon, “In-datacenter

performance analysis of a Tensor Processing Unit”, International
Symposium on Computer Architecture (ISCA), Jun. 2017.

[9] G. Desoli, N. Chawla, T. Boesch, S. Singh, E. Guidetti, F. Ambroggi, T.

Majo, P. Zambotti, M. Ayodhyawasi, H. Singh, and N. Aggarwal, “A
2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for

intelligent embedded systems”, International Solid-State Circuits

Conference (ISSCC), pp. 238-239, Feb. 2017.

[10] Online resource, Intel, “Neural compute engine: hardware based
acceleration for deep neural networks”, https://www.movidius.com/

MyriadX.

[11] J. Song, Y. Cho, J. Park, J. Jang, S. Lee, J. Song, J. Lee, and I. Kang, “An
11.5TOPS/W 1024-MAC butterfly structure dual-core sparsity-aware

neural processing unit in 8nm flagship mobile SoC”, International Solid-

State Circuits Conference (ISSCC), pp. 130-131, Feb. 2019.
[12] T. Karnik, D. Kurian, P. Aseron, R. Dorrance, E. Alpman, A. Nicoara, R.

Popov, L. Azarenkov, M. Moiseev, L. Zhao, S. Ghosh, R. Misoczki, A.

Gupta, A. M, S. Muthukumar, S. Bhandari, Y. Satish, K. Jain, R. Flory,
C. Kanthapanit, E. Quijano, B. Jackson, H. Luo, S. Kim, V. Vaidya, A.

Elsherbini, R. Liu, F. Sheikh, O. Tickoo, I. Klotchkov, M. Sastry, S. Sun,

M. Bhartiya, A. Srinivasan, Y. Hoskote, H. Wang, and V. De, “A cm-
scale self-powered intelligent and secure IoT edge mote featuring an ultra-

low-power SoC in 14nm tri-gate CMOS”, International Solid-State

Circuits Conference (ISSCC), pp. 46-47, Feb. 2018.
[13] V. Honkote, D. Kurian, S. Muthukumar, D. Ghosh, S. Yada, K. Jain, B.

Jackson, I. Klotchkov, M. R. Nimmagadda, S. Dattawadkar, P.

Deshmukh, A. Gupta, J. Timbadiya, R. Pali, K. Narayanan, S. Soni, S.
Chhabra, P. Dhama, N. Sreenivasulu, J. Kollikunnel, S. Kadavakollu, V.

D. Sivaraj, P. Aseron, L. Azarenkov, N. Robinson, A. Radhakrishnan, M.

Moiseev, G. Nandakumar, A. Madhukumar, R. Popov, K. P. Sahu, R.

Peguvandla, A. Ruiz, M. Bhartiya, A. Srinivasan, and V. De, “A

distributed autonomous and collaborative multi-robot system featuring a

low-power robot SoC in 22nm CMOS for integrated battery-powered
minibots”, International Solid-State Circuits Conference (ISSCC), pp. 48-

49, Feb. 2019.
[14] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi, L.

Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao, A. Rao,

G. Liu, R. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and M. Taylor, “The
Celerity open-source 511-core RISC-V tiered accelerator fabric”, IEEE

Micro, vol. 38, issue. 2, pp. 30-41, Apr. 2018.

[15] P. Whatmough, S. Lee, M. Donato, H. Hsueh, S. Xi, U. Gupta, L.
Pentecost, G. Ko, D. Brooks, G. Wei, “A 16nm 25mm2 SoC with a 54.5x

flexibility-efficiency range from dual-core Arm Cortex-A53 to eFPGA

and cache-coherent accelerators”, IEEE Symposium on VLSI Circuits
(VLSI), pp. 34-35, Jun. 2019.

[16] J. Alsop, M. Sinclair, and S. Adve, “Spandex: A Flexible Interface for

Efficient Heterogeneous Coherence”, International Symposium on
Computer Architecture (ISCA), pp. 261-274, Jun. 2018.

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. Dally,

“EIE: efficient inference engine on compressed deep neural network”,
International Symposium on Computer Architecture (ISCA), pp. 243-254,

Jun. 2016.

[18] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B.
Khailany, J. Emer, S. Keckler, and W. Dally, “SCNN: an accelerator for

compressed-sparse convolutional neural networks”, International

Symposium on Computer Architecture (ISCA), pp. 27-40, Jun. 2017.
[19] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A

0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-

frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI”, International Solid-State Circuits Conference (ISSCC), pp. 246-

247, Feb. 2017.

[20] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, J. Kadomoto,
T. Miyata, M. Hamada, T. Kuroda, and M. Motomura, “QUEST: A

7.49TOPS multi-purpose log-quantized DNN inference engine stacked on

96MB 3D SRAM using inductive-coupling technology in 40nm CMOS”,
International Solid-State Circuits Conference (ISSCC), pp. 216-218, Feb.

2018.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.

Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.

Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.

Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M.

Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv: 1603.04467, 2016.

[22] D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia,
“Accelerating deep learning workloads through efficient multi-model

execution”, NeurIPS Workshop on Systems for Machine Learning, Dec.

2018.

[23] S. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G. Wei, D. Brooks,
“SMAUG: end-to-end full-stack simulation infrastructure for deep

learning workloads,” arXiv preprint arXiv: 1912.04481, 2019.

[24] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K.
Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B.

Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B.

Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Machine learning at
Facebook: understanding inference at the edge”, High Performance

Computer Architecture (HPCA), pp. 331-344, Feb. 2019.

[25] Online resource, Nvidia, “Embedded systems for next-generation
autonomous machines”, https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/.

[26] Online resource, Google, “Edge TPU”, https://cloud.google.com/edge-
tpu/.

[27] M. Hill, M. Marty, “Amdahl's law in the multicore era”, Computer, vol.

41, no. 7, pp. 33-38, Jul. 2008.
[28] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling”, International Symposium

on Computer Architecture (ISCA), pp. 365-376, Jun. 2011.
[29] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a

machine-learning classifier in a standard 6T SRAM array”, IEEE Journal

of Solid-State Circuits (JSSC), vol. 52, no. 4, pp. 915-924, Apr. 2017.

[30] Z. Jiang, S. Yin, M. Seok, and J. Seo, “XNOR-SRAM: In-memory

computing SRAM macro for binary/ternary deep neural networks”, IEEE

Symposium on VLSI Technology (VLSI), pp. 173-174, Jun. 2018.
[31] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D.

Blaauw, and R. Das, “Neural Cache: bit-serial in-cache acceleration of
deep neural networks”, International Symposium on Computer

Architecture (ISCA), pp. 383-396, Jun. 2018.

[32] A. Graves, G. Wayne, I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv: 1410.5401, 2014.

[33] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-

Barwińska, S. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A.
P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C.

Summerfield, P. Blunsom, K. Kavukcuoglu and D. Hassabis, “Hybrid

computing using a neural network with dynamic external memory”,
Nature, vol. 538, pp. 471-476, Oct. 2016.

[34] H. Jang, J. Kim, J. Jo, J. Lee, and J. Kim, “MnnFast: a fast and scalable

system architecture for memory-augmented neural networks”,
International Symposium on Computer Architecture (ISCA), pp. 250-263,

Jun. 2019.

[35] J. Stevens, A. Ranjan, D. Das, B. Kaul, and A. Raghunathan, “Manna: an
accelerator for memory-augmented neural networks”, IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 794-806,

Oct. 2019.
[36] A. Trask, F. Hill, S. Reed, J. Rae, C. Dyer, and P. Blunsom, “Neural

arithmetic logic units”, Advances in Neural Information Processing

Systems (NIPS), pp. 8035-8044, Dec. 2018.
[37] C. Chen, H. Peng, X. Liu, H. Ding, and C. Shi, “Exploring the

programmability for deep learning processors: from architecture to

tensorization”, Design Automation Conference (DAC), Jun. 2018.
[38] M. Putic, S. Venkataramani, S. Eldridge, A. Buyuktosunoglu, P. Bose,

and M. Stan, “Dyhard-DNN: even more DNN acceleration with dynamic

hardware reconfiguration”, Design Automation Conference (DAC), Jun.
2018.

[39] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio,

“Binarized neural networks”, Advances in Neural Information Processing
Systems (NIPS), pp. 4107-4115, Dec. 2016.

[40] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, S.

Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Motomura,

“BRein memory: a single-chip binary/ternary reconfigurable in-memory

deep neural network accelerator achieving 1.4 TOPS at 0.6 W”, IEEE

Journal of Solid-State Circuits (JSSC), vol. 53, no. 4, pp. 983-994, Apr.
2018.

[41] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An

always-on 3.8μJ/86% CIFAR-10 mixed-signal binary CNN processor

with all memory on chip in 28nm CMOS”, International Solid-State
Circuits Conference (ISSCC), pp. 222-223, Feb. 2018.

[42] M. Yang, C. Yeh, Y. Zhou, J. Cerqueira, A. Lazar, and M. Seok, “A 1μW

voice activity detector using analog feature extraction and digital deep
neural network”, International Solid-State Circuits Conference (ISSCC),

pp. 346-347, Feb. 2018.

[43] Online resource, BittWare, “FPGA acceleration of binary weighted neural
network inference”, https://www.bittware.com/resources/bwnn/

[44] J. Park, J. Lee, and D. Jeon, “A 65nm 236.5nJ/classification

neuromorphic processor with 7.5% energy overhead on-chip learning
using direct spike-only feedback”, International Solid-State Circuits

Conference (ISSCC), pp. 140-141, Feb. 2019.

[45] A. Waterman, and K. Asanovic, “The RISC-V instruction set manual,
volume I: user-level ISA, document version 2.2”, RISC-V Foundation,

May 2017.

[46] B. Keller, M. Cochet, B. Zimmer, J. Kwak, A. Puggelli, Y. Lee, M.
Blagojevi´c, S. Bailey, P. Chiu, P. Dabbelt, C. Schmidt, E. Alon, K.

Asanovi´c, and B. Nikoli´c, “A RISC-V processor SoC with integrated

power management at submicrosecond timescales in 28 nm FD-SOI”,
IEEE Journal of Solid-State Circuits (JSSC), vol. 52, no. 7, pp. 1863-

1875, Jul. 2017.

[47] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,

“MiBench: a free, commercially representative embedded benchmark

suite”, IEEE International Workshop on Workload Characterization, pp.

3-14, 2001.
[48] K. Mishiba, and T. Yoshitome, “Image resizing with SIFT feature

preservation”, IEEE International Conference on Image Processing
(ICIP), pp. 991-995, 2013.

[49] N. Mitianoudis, and N. Papamarkos, “Multi-spectral document image

binarization using image fusion and background subtraction techniques”,
IEEE International Conference on Image Processing (ICIP), pp. 5172-

5176, 2014.

[50] D. Demirović. E. Skejić, and A. Šerifović–Trbalić, “Performance of some
image processing algorithms in Tensorflow”, International Conference

on Systems, Signals and Image Processing (IWSSIP), pp. 1-4, 2018.

[51] N. Nachiappan, H. Zhang, J. Ryoo, N. Soundararajan, A.
Sivasubramaniam, M. Kandemir, R. Iyer, and C. Das, “VIP: virtualizing

IP chains on handheld platforms”, International Symposium on Computer

Architecture (ISCA), pp. 655–667, Jun. 2015.
[52] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, “Euphrates:

algorithm-SoC co-design for low-power mobile continuous vision”,

International Symposium on Computer Architecture (ISCA), pp. 547–560,
Jun. 2018.

[53] Online resource, Microchip, “PIC18F13K22”,

https://www.microchip.com/wwwproducts/en/PIC18F13K22
[54] Online resource, Texas Instruments, “MSP432P401R”,

https://www.ti.com/product/MSP432P401R

[55] Online resource, Microchip, “ATSAMA5D44”,
https://www.microchip.com/wwwproducts/en/ATsama5d44

[56] Online resource, SiFive, “E31”, https://www.sifive.com/cores/e31

[57] Online resource, Wikipedia, “Apple A13”,
https://en.wikipedia.org/wiki/Apple_A13

[58] Z. Azad, M. S. Louis, L. Delshadtehrani, A. Ducimo, S. Gupta, P.

Warden, V. J. Reddi, and A. Joshi, “An end-to-end RISC-V solution for
ML on the edge using in-pipeline support”, Boston area Architecture

(BARC) Workshop, 2020.

[59] M. Atzori, A. Gijsberts, S. Heynen, A. Mittaz Hager, O. Deriaz, P. Van
der Smagt, C. Castellini, B. Caputo, and H. Müller, “Building the Ninapro

database: A resource for the biorobotics community”, IEEE International

Conference on Biomedical Robotics and Biomechatronics (BioRob), pp.

1258-1265, Jun. 2012.

[60] K. Otseidu, T. Jia, J. Bryne, L. Hargrove, and J. Gu, “Design and

optimization of edge computing distributed neural processor for
biomedical rehabilitation with sensor fusion”, International Conference

on Computer-Aided Design (ICCAD), Nov. 2018.

