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Abstract— Machine learning inference has become an essential 

task for embedded edge devices requiring the deployment of costly 

deep neural network accelerators onto extremely resource-

constrained hardware. Although many optimization strategies 

have been proposed to improve the efficiency of standalone 

accelerators, the optimization for end-to-end performance of a 

computing device with heterogeneous cores is still challenging and 

often overlooked, especially for low power devices. In this paper, 

we propose a unified reconfigurable architecture, referred as 

Neural CPU (NCPU), for low-cost embedded systems. The 

proposed architecture is built on a binary neural network 

accelerator with the capability of emulating an in-order RISC-V 

CPU pipeline. The NCPU supports flexible programmability of 

RISC-V and maintains data locally to avoid costly core-to-core 

data transfer. A two-core NCPU SoC is designed and fabricated in 

a 65nm CMOS process. Comparing with the conventional 

heterogeneous architecture, a single NCPU achieves 35% area 

reduction and 12% energy saving at 0.4V, which is suitable for low 

power and low-cost embedded edge devices. The NCPU design also 

features the capability of smoothly switching between general-

purpose CPU operation and a binary neural network inference to 

realize full utilization of the cores. The implemented two-core 

NCPU SoC achieves an end-to-end performance speed-up of 43% 

or equivalent 74% energy saving based on use cases of real-time 

image classification and motion detection.  

Keywords— Reconfigurable architecture, embedded systems, 

ultra-low power device, binary neural network, RISC-V, end-to-end 

performance, SoC silicon validation. 

I. INTRODUCTION 

A growing gap is observed between the computing demand 
and the availability of hardware resources in low power 
embedded systems. On one hand, the immense impact of 
ubiquitous computing is unfortunately confined by power and 
cost constraints of hardware devices. Many emerging 
applications in Internet-of-Things (IoT) [1-2] and sensor 
networks [3] rely on energy-scavenging devices to perform 
critical measurement, computation, and communication tasks 
with extremely limited and unpredictable power sources. 
Wearables and biomedical devices also suffer from the very 
tight budgets of energy consumption and form factors [4-5]. On 
the other hand, the machine learning (ML) tasks, such as deep 

neural network (DNN), have become a widely deployed and 
often essential workload on systems from datacenters all the way 
down to low power mobile devices [6-8]. Unfortunately, the 
resource demand from such ML applications is often 
prohibitively high for low-power low-cost embedded systems.  

To support the heavy workload of ML tasks, recent 
embedded SoCs normally adopt a heterogeneous architecture 
which consists of both general-purpose processors, e.g. CPUs, 
and domain-specific accelerators, such as DNN accelerator [9-
13], as shown in Fig. 1. However, for resource-constrained 
embedded systems, e.g. smart sensors, micro drones, which 
have limited form factors and power budget, deploying a DNN 
accelerator core is often too costly due to high consumption of 
power and area overheads. As reported in many industry-grade 
embedded or mobile SoCs, the neural network accelerator 
engines could consume a few times more area and power than a 
CPU core due to the large number of MAC units and the large 
SRAM storage space required by ML accelerators [10-11].  

In addition to the power and area cost, the heterogeneous 
architecture is often bottlenecked by the expensive ML task 
offloading and CPU/accelerator under-utilization. To accelerate 
computation of intensive tasks for ML, these tasks are 
commonly offloaded from CPU to accelerators [23-24]. 
However, the unbalanced workload between CPU and 
accelerators could significantly degrade the core utilization rate 
and impact end-to-end execution latency. For instance, the CPU 
data pre-processing could take more than 60% runtime in  
various heterogenous SoCs, as shown in Fig. 1. Unfortunately, 
although many schemes have been explored to improve the 
efficiency of standalone DNN accelerator [17-20], there has 
been very limited optimization for end-to-end performance of 
heterogeneous CPU + accelerator cores [21-23]. In [15, 23], the 
accelerator coherency port (ACP) has been utilized to allow 
accelerators to directly request data from CPU’s LLC and reduce 
the data transfer cost. In [14], the RoCC interface has been 
deployed for flexible and tight on-chip communication between 
RISC-V cores and the customized BNN accelerator cores.  

As a result of the significant design cost and utilization 
challenges for the DNN accelerators, a recent survey shows that 
the majority of mobile edge devices on the market are still 
relying on CPU to perform machine learning inference, even 



though there are dedicated accelerator or GPU designed inside 
the SoC [24]. For resource-constrained devices, it is worthwhile 
to evaluate the tradeoff between performance benefit and the 
design cost for a dedicated neural network accelerator. It is also 
critical to look for a new edge SoC architecture which could 
offer both general-purpose CPU operation and ML inference 
efficiently with high core utilization and sufficient flexibility for 
programming. 
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Fig. 1. Low core utilization in the conventional heterogeneous SoC. 

In this paper, we propose a novel reconfigurable architecture 
for resource constrained systems aiming to close the significant 
design gap between general-purpose CPUs and neural network 
accelerators. Comparing with the previous designs targeting to 
improve the latency of core-to-accelerator communication [14-
15], our work explored a new architecture solution to realize 
both the general-purpose CPU and BNN operations in a single 
core obviating the need for a complex heterogeneous interface. 
The benefit of such an architecture is to obtain not only cost 
reduction for edge devices but also higher core utilization to 
improve end-to-end performance. The proposed design has been 
fabricated using a 65nm CMOS process and fully verified with 
the operating voltage ranging from 1V down to the ultra-low 
power regime of 0.4V. There are two major benefits obtained by 
NCPU comparing with baseline heterogeneous architecture 
including separate CPU and BNN accelerators. First, a single 
NCPU core achieves a 35% area reduction and 12% energy 
saving while maintaining the functionality and efficiency of 
both baseline cores, rendering significant cost advantages in 
resource-constrained edge devices. Second, with less than 3% 
area overhead, a two NCPU cores SoC achieve core full 
utilization while avoiding the ML task offloading. With that, a 
43% end-to-end performance or equivalent 74% energy 
improvement is obtained in real-time image and motion 
detection demonstration use cases. 

The contributions of this work are summarized as below: 

• For resource-constrained edge devices, a novel NCPU 

architecture is proposed to leverage the existing logic and 

memories inside a neural network accelerator to recover the 

capability of conventional CPU pipeline operations. As a result, 

a NCPU core supports both ML inference and general-purpose 

CPU computing with efficiency similar to the respective 

architectures. 

• The proposed NCPU architecture is designed to fully 

support the 32-bit RISC-V Base ISA. A customized RISC-V 

instruction set extension is developed to incorporate BNN 

operations, data transferring and mode switching.  

• A special zero-latency transition scheme is developed to 

support seamless switching between CPU and BNN modes by 

essentially pipelining the reconfiguration. Data can remain in 

place while the core is reconfiguring thereby eliminating 

transfer between CPU and accelerator. 

• A two NCPU core SoC chip is designed and fabricated 

using 65nm CMOS technology. Measured performance is 

compared with baseline conventional heterogeneous design.  

Real-life use cases for image classification and motion 

detection are used to demonstrate the energy and end-to-end 

benefits of the proposed architecture in the embedded system. 

II. MOTIVATION AND DESIGN METHOD 

A. Heterogeneous SoC for Edge Devices 

As described above, the resource constrained embedded SoC 
has extremely low power and cost budgets for various 
applications, such as IoT devices. In these types of devices, the 
total power budget for the computing activities is tens of mW or 
less [53-54]. Conventionally, a CPU is implemented in 
microcontrollers which can be programmed for various 
embedded applications [53-56]. With the recent workload 
requirements for machine learning applications, the support of 
DNN operation becomes critical for embedded systems, with 
various industrial products [10-13, 25-26].  

To evaluate the benefits of the dedicated neural network 
accelerator, we built a real-time use case for human motion 
detection using the sensor data from Ninapro database [59]. In 
this task, the CPU extracts features from the sensor data and then 
perform a BNN inference with a 74% classification accuracy. 
This use case has been tested on either an in-house designed 
standalone RISC-V CPU or a heterogeneous design including 
both CPU with a dedicated BNN accelerator. 

The measured results from our prototype chip are listed in 
Table 1. For the real-time application, there is a stringent real-
time latency requirement, i.e. 5ms, for each motion detection. It 
is observed that standalone CPU requires 32ms for feature 
extraction and BNN inference for a single motion detection and 
fails to meet the latency requirement. With the help of the ASIC 
BNN accelerator, the real-time latency and energy-efficiency 
are improved by 59X to 0.54ms and 36X to 0.58uJ, respectively. 
Therefore, for some real-time applications, a ML accelerator is 
indispensable to improve performance as the standalone CPU 
fails to meet the latency requirement. 

TABLE I.  MEASURED LATENCY AND ENERGY CONSUMPTION FOR A MOTION 

DETECTION TASK WITH THE REAL-TIME LATENCY REQUIREMENT OF 5MS. 

 Latency (ms) Energy (uJ) 

Standalone CPU 32 21.12 

CPU w/ BNN acc. 0.54 0.58 

B. Design Challenges for Resource Constrained SoC 

There are several design challenges for heterogeneous SoCs 
including both CPU and ML accelerator for the resource 
constrained embedded devices. First, the DNN accelerators are 
expensive in many respects. For instance, in Intel’s 16nm ultra-
low power embedded SoC [10], the neural accelerator engine 
consumes about the same area as the CPU core, delivering up to 



1TOPS performance for the neural network. In Samsung’s 8nm 
mobile SoC [11], the DNN accelerator has more than 2X larger 
area than the host CPU and consumes 39mW even at 0.5V. For 
the resource constrained embedded SoCs, the area and power of 
DNN accelerators become the limiting factor for their adoption. 

Second, CPU often dominates end-to-end performance 
causing the DNN accelerator to be under-utilized. For example, 
in Intel’s IoT edge SoC [12], the CPU operation for data pre-
processing takes about 70ms, while the classification of each 
feature in CNN accelerator only takes 5ms. As a result, the CNN 
accelerator utilization rate approaches 24%, while remaining 
idle during the rest of the time, as shown in Fig. 1. Similarly, 
Microsoft’s study also shows that the CPU data pre-processing 
time could take 67% of runtime significantly impacting the end-
to-end performance [21]. In addition, the costly task offloading 
from CPU to accelerator often becomes a performance 
bottleneck limiting the overall improvement from accelerator 
[23-24]. As implied by Amdahl's Law, the optimizations 
focusing on standalone DNN accelerator is insufficient to 
improve the performance of the whole system [27-28]. A novel 
architecture design is needed to improve the end-to-end 
performance for the resource-constrained devices. 

C. Architecture Design Methodology in This Work 

Recently, to close the architecture design gap between CPU 
and ML accelerators, there are some CPU developments 
particularly for ML tasks, such as the AMX unit in recent 
Apple’s A13 CPUs [57], or other special in-pipeline support for 
ML [58]. Some special heterogeneous interfaces, e.g. RISC-V 
RoCC [14] or ACP [15], have been deployed to the SoC to 
provide flexibility to accelerators for data transfer. With these 
interfaces, the accelerators can directly transfer data to/from the 
CPU caches. Therefore, the data transfer latency is much shorter 
compared with the conventional DMA access to DDRs. In [16], 
a flexible and efficient coherence interface is also proposed for 
heterogeneous cores. However, such interfaces increase the 
design complexity and consume additional area and power due 
to complex asynchronous logic and communication protocols. 

Different from the above approaches, to meet the low cost 
and low power requirements of edge devices, this work proposes 
a design approach that migrates CPU functionalities into an 
ASIC accelerator design. We used a BNN accelerator as starting 
baseline architecture which maintains the highest efficiency for 
neural network inference. The CPU instruction support is then 
added into the accelerator design to recover the general-purpose 
computing with very small overhead. The benefit of such an 
architecture is that it maintains the efficiency of accelerator 
while still support CPU operation leading to a low cost and high 
throughput architecture for embedded devices. Comparing with 
the previous SoC design with heterogeneous interfaces [14-15], 
the NCPU saves significant area cost for resource-constrained 
devices by both reducing the required cores and avoiding 
heterogeneous interface design. 

It is worth mentioning that the challenges of bridging the 
architecture design gap between CPU and accelerator vary with 
the complexity of the baseline architectures. There is a widely 
open architecture exploration space ranging from simple low-
end microprocessor and accelerator to more complicated multi-
thread CPUs and neural engines. Depending on different 
baseline architectures, different architecture design 

methodology might be needed to couple the heterogeneous cores 
tightly, such as the RoCC interface used previously [14]. In this 
work, partially due to the high cost of chip fabrication, we only 
explored one extreme reconfigurable design for very low cost 
energy scavenging edge devices. A large design space is yet to 
be studied for many different application domains. We leave the 
further exploration of the design space to our future work. 
Despite of the limitation, to our best knowledge, this work is the 
first silicon implementation for a reconfigurable architecture 
which can efficiently operate and smoothly switch between 
general-purpose CPU and neural network inference. 
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Fig. 2. (a) The baseline BNN accelerator architecture, (b) the hardware 

implementation of multi-layer BNN, and the detailed design of neuron cell. 

III. BINARY NEURAL NETWORK ON EDGE 

The binarized neural network (BNN) has been proposed as 
an attractive low-cost solution for low power embedded 
applications. BNN constrains the weights and inputs to be only 
+1 and -1, which significantly reduces the weight memory cost 
with marginal degradation in accuracy [39]. In addition, the 
multi-bit multiplier is replaced by a simple XNOR gate 
rendering significantly smaller neuron cell design. Due to its 
advantages in low cost and power consumption, BNN 
accelerators gain tremendous popularity in chip demonstrations 
for various embedded applications, such as image classification 
[40-41], voice detection [42], etc. BNN has also been 
implemented into low-power industrial products. For instance, 
BittWare’s product is an industry example of using BNN on 
FPGA showing 100X saving [43]. As BNN only has small 
accuracy loss for simple tasks, e.g. 3% loss for MINIST, but 
brings more than 10-100X lower cost and power compared with 
DNN, it is a good compromise for ultra-low power IoT or edge 
AI devices. Hence, we select BNN as the baseline of our neural 
CPU architecture. 

Fig. 2(a) shows the architecture of BNN accelerator used in 
this work. Similar to the previous designs [40, 44], the input and 
weight values are fetched directly from SRAM memory and sent 
to the XNOR neurons. The output value of a single neuron is 
shared with all the neurons at the following layer to increase the 
data parallelism. The pipelined multi-layer BNN is built to 
propagate the input from left to right through all the layers and 
generate the final classification result at the last layer. The 
registers in each neuron cell, as shown in Fig. 2(b), store the 
intermediate input values for the next network layer. This is 
analogous with conventional CPU pipeline operation, which 
propagates different instructions in sequence all the way to the 
last pipeline layer to commit. As a result, the depicted BNN 
architecture resembles the existing pipelined CPU architecture 
and brings about an opportunity to reconcile the two distinct 
computing models. The selection of the neuron numbers of the 



BNN accelerator needs to consider both the BNN model 
accuracy and the size compatibility with the CPU core. In this 
work, a 4-layer BNN accelerator with 100 neurons in each layer 
is selected with consideration of the targeted embedded 
applications and the RISC-V CPU pipeline constructions. The 
selection of the baseline BNN topology will be further discussed 
in Section 8.1. 

IV. NEURAL CPU ARCHITECTURE 

A. Neural CPU: A CPU Pipeline Emulator 

For the target CPU model, we used open-source RISC-V 
ISA, i.e. 32-bit Base Integer RV32I, which is highly suitable for 
ultra-low power embedded edge devices due to its amenability 
to a simple pipelined implementation, low power consumption 
and high portability [45]. The proposed NCPU architecture 
recovers the full functionality of the CPU pipeline on top of the 
baseline BNN accelerator by reconfiguring the existing logic 
and memory banks with small hardware overhead. As shown in 
Fig. 3, a four-layer neural network is built as the baseline BNN 
accelerator to intentionally match a 5-stage in-order RISC-V 
CPU pipeline. For more than four layers of BNN, the output 
layer results can be wrapped back to the first layer for the deeper 
neural network. An in-house designed 5-stage in-order pipeline, 
which is similar to the RISC-V Rocket core [46], is fused into 
the BNN accelerator by modifying the data path and binary 
neuron of every layer. As a result, a neural pipeline is built as a 
hardware emulator of the RISC-V pipeline operation. The 
detailed implementation at each neuron layer and their 
reconfiguration capabilities are explained as follows. 

Stage 1 - NeuroPC: Program Counter 
Similar to the conventional CPU pipeline, the first neural 

stage is used to perform the program counter (PC) for fetching 
the incoming instruction. In most cases, the PC stage is only 
performing “+4” operation, which is an ADD operation. 
Therefore, 4 neuron cells are connected in series with the self-
feedback at the last neuron to realize “+4”. The existing adder 
inside the neuron cell MAC is reused, with each neuron 
generating 8 bits of the PC. For supporting branch address 
generated from the following Execution stage, a mux is added 
for branch taken operation.  

Stage 2 - NeuroIF: Instruction Fetch 
Part of the first neural layer is also reconfigured to emulate 

the CPU’s IF stage. As the PC address is sent to the instruction 
cache, the instructions are read out and stored. Therefore, the 
neuron cells are reconfigured as bypass cells, which pass the 
incoming values directly to the output. The registers inside the 
neuron cells at the NeuroIF stage are reused to store the fetched 
instructions, with only one additional mux to select the register 
data source. 

Stage 3 - NeuroID: Instruction Decode 
The ID stage decodes instructions into partial codes such as 

opcode, function code, register sources and destinations, etc. 
The decode field is connected to the XNOR gate with the 
original weights. To decode particular information, such as the 
opcode, a group of neuron cells is combined to XNOR the 
instruction field with the weights of neural network. As a result, 
a mapping between the instruction ISA and decoded opcodes, 
e.g. ADD, SUB is established using neural network operation. 

Both the adder and registers inside the neuron cells are reused. 
In addition, the ID stage also readout the operand values from 
the register file and store them, which is similar to the bypass 
cell at the NeuroIF stage. 

Stage 4 - NeuroEX: Execution 
The NeuroEX stage emulates different arithmetic or boolean 

operations as a conventional ALU. Since only an adder and 
XNOR gate exists inside the original BNN neuron cell, 
hardware is added to recover the rest of ALU operations 
including AND, OR, etc. The CPU operations that require 
similar resources, e.g. ADD/SUB, LW/SW, are grouped and 
mapped into the same neuron cells, to reduce unnecessary 
activation of unused neurons. In addition, a multiplier is also 
realized at the Execution stages based on existing “adders” 
inside neurons. For some special CPU control data paths, such 
as branch resolution and operand forwarding, these data paths 
are implemented by the conventional digital design to minimize 
the area overhead. 

Stage 5 - NeuroMEM: Memory Access 
The functionality of the NeuroMEM stages is mainly reading 

or writing the data from/to the data cache. Hence, the neuron 
cells propagate results similar to the NeuroIF bypass neurons. 
Based on the opcode type, the read/write enable signals are sent 
to the data cache for the memory operations, which will be 
discussed in the next section. Following the NeuroMEM stage, 
the computation results are written back to the register file and 
the instruction is committed. 

P
CIn
s
tr

Instr $ RF

R
s

OpA/OpB

Func

Op

Data $

W
r_

D

R
d

_
D

Forw ard

A
d
d

r

W
r_

D

NeuroPC/
NeuroIF NeuroID

PC[i]

Branch 

PC[i]

W
A
B

+

Branch PC[i-

1]

Cout[i-1]

W
A
B

+

Cout[i]

PC[i-1]

32-bit Adder: EX Cell:

W
A

B

Boolean

Result[i]

Func

+

OpA[i]

OpB[i]

Bypass Cell:

Rd_D[i]

+

A
B

W

Rd_D[i]

Instr. Decoder:

W2

Instr[14]

W1

Instr[13]

W0

Instr[12]

Func

Func
add
sll
.. .

and

Func

Cout[i-1]

Wi

B

+

Instr[i]

Branch 
PC

Im
a
g

e
 M

e
m

R
e
s
u
lt M

e
m

NeuroEX
NeuroMe

m

Neuro
WB

Instr
000
001
.. .

111

 
Fig. 3. Top-level architecture of the Neural CPU with its data path at each 

pipeline stage. 

37 RISC-V base instructions and 5 additional customized 
instructions for BNN modes are supported in the NCPU. For 
each supported instruction, we recover the required logic in the 
baseline BNN accelerator stage by stage. For example, to 
support the decoding of ADD (i.e. funct code 000) in RV32I, the 
function field Instr[14:12] is XNOR-ed with an inversed neuron 
weights W[2:0] value of 111 and summed together (i.e. 



Instr[14]⊙W[2]+Instr[13]⊙W[1]+Instr[12]⊙W[0]) in a 

three neuron cell group, as shown in Fig. 3(a). The output of this 
decode neuron group will be asserted to low whenever there is 
ADD decoded leading to addition operations at the following 
NeuroEX stage. In NCPU, each instruction has its corresponding 
decode neuron group to decode to the target ALU operations. By 
reusing the existing XNOR and adders in the neuron cell, the 
hardware overhead has been greatly limited. Besides, the weight 
values are statically set in the CPU mode for different decoding 
strategies and hence will not incur any power overhead from 
memory access. 

To support the control instructions, such as conditional 
branch, some data paths which cross pipeline stages are also 
recovered. For example, the branch target PC calculated at the 
NeuroEX stage is wired back to the NeuroIF stage, as shown in 
Fig. 3(a). If the branch is taken, the branch PC will be used as 
the next fetch address. To resolve register data dependencies, the 
data forwarding paths have also been added between NeuroEX 
and its earlier stages. Recovering these crossing stage data paths 
only requires simple digital multiplexers with low overhead. The 
complete data paths under different operation modes are shown 
in Fig. 4 (a). In NCPU, the NeuroEX stage needs the most design 
modifications, i.e. most area overhead, to recover the full 
functionality of the CPU ALU. The rest pipeline stages can 
better reuse the existing BNN accelerator logic and incurs less 
overhead. The unused neuron cells in the CPU operation mode 
are clock gated to reduce the power overhead. 
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mode, (b) the address arbiter design to support the memory reconfigurations. 

B. Memory Reuse Scheme for Neural CPU 

Beyond the reconfiguration of the core data path, to save the 
memory area, the on-chip SRAM memory for the BNN 
accelerator is also designed to be reused as data cache during 
CPU operation. Fig. 4(a) shows the memory configuration 
during both operation modes. In BNN mode, multiple SRAM 
banks with 32-bit wide port are used to store all the BNN 
weights and its input image data. Each neuron layer has a group 
of memory banks to store all the weights and support wide 
memory bandwidth. There is one dedicated image memory to 
store the input values and one output memory to store the 
classification results. The top-level sequence controller is used 
to generate the unified SRAM address to all the weight memory 
banks and the sequence control configurations to manage the 
neural network process. During BNN mode, all the weight 
memory banks are enabled to support the max image 
classification throughput.  

When switched to CPU mode, all weight memories and the 
input/output image memories are reused as the data cache. 
Separate instruction cache and register file are used to store the 
instruction programs and some initial data. For the data cache 
operation, an address arbiter is used to enable only one SRAM 
bank out of all memory banks based on the target address for the 
read or write operation, as shown in Fig. 4(b). The rest of the 
unused memory are clock gated to remove the power overhead 
from weight banks in BNN operation. 

The reuse of SRAM banks for both operation modes can not 
only significantly reduce the total memory capacity requirement 
for dual operations but also allows CPU/BNN output data to be 
stored locally without data transfer between the cores, which 
make the task offloading much simpler. As a result, the cost of 
data transfer among heterogeneous cores in the conventional 
design is eliminated. 

V. ZERO-LATENCY SWITCHING AND ISA SUPPORT 

A. Zero-latency Switching Between Operation Modes 

To establish the zero-latency mode transition between RISC-
V CPU operation and the BNN inference operation, a special 
mode transition sequence with a series of customized 
instructions is developed for the NCPU, as shown in Fig. 5. At 
the beginning of task operation, the NCPU stays in CPU 
operation mode to perform general-purpose computation, such 
as data pre-processing, configuration calculation, etc. The 
processed image data is stored into local image memory 
(reconfigurable as the data cache), and the configurations for 
accelerator operation stores into special designed transition 
neuron cells. After completion of CPU pre-processing, the 
NCPU switches to BNN mode and directly reads the processed 
data from the image memory and proceed to the classification. 
Similarly, after the image classification from BNN operation, 
the NCPU can switch to CPU mode with the classification 
results directly from the output memory reconfigured as data 
cache. 

For CPU to BNN mode transition, a customized RISC-V 
instruction Trans_BNN is used to switch core operation mode 
into BNN inference, as Fig. 5(b). To avoid the latency for BNN 
inference, the weight values of the first neuron layer always 
reside at one of the weight memory banks. Hence the image 
inference can start immediately with the layer1 weights after the 



mode switching, while the weights for the following neuron 
layers are continuously loaded from the global memory to the 
local weight SRAM at the same time. 

For the BNN to CPU mode transition, the CPU initial data is 
pre-loaded into data cache before the mode transition happens. 
While the last image/task in BNN is being inferenced, the DMA 
engine has acknowledged the upcoming completion of the BNN 
task (as neural layer 1 is freed) and starts loading CPU initial 
data from L2. Hence there is no additional latency incurred upon 
switching to CPU mode. After the NCPU core switches back to 
the CPU mode, fetch at the current PC resumes to enable the 
post-processing of the image classification results. 

To simplify the cache coherency for resource-constrained 
devices, a simple software managed data transfer policy is 
adopted for the NCPU. The developed software run code is 
responsible for explicitly defining the cache lines that the 
accelerator is going to read from and/or write to. For small size 
neural network models, the weights only utilize a portion of 
weight memory, with the unused weight memory and image 
memory serve as the data cache for CPU. Hence, no dynamic 
reconfiguration of SRAM is needed. For large size BNN models 
with weights fully occupying the whole weight memory, the 
data cache needs to be dynamically reconfigured into weight 
cache due to the large model size.  As a result, the weights need 
to be loaded before transitioning into the BNN mode. For such 
situations, the zero-latency switching scheme is developed to 
hide the data transfer latency and performance impact during the 
mode switching. 
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Fig. 5. (a) Operation mode switching with special data pre-loading sequences 
to achieve zero latency, (b) the assembly code example during the workload 

runtime, (c) the example of customized RISC-V instruction extension to 

support NCPU. 

B. Customized RISC-V Extension 

RISC-V is suitable for ultra-low power embedded edge 
devices and also supports flexible customized instruction 
extensions for special purposes. In our work, a series of 
customized instructions are developed and embedded inside the 
RISC-V ISA to support special NCPU operations and the mixed 
mode programming. In general, the last 7 bits of the instruction 
field are modified to indicate the customized NCPU instructions. 
Some instructions are introduced as following and in Fig. 5(c). 

1. Mv_Neu: move the designated register file values to the 

special design transition neuron located in each neural 

layer. The transition neurons are the configurations, e.g. 

model size, for the neural network operations. 

2. Trans_BNN: trigger the operation mode of the NCPU core 

from CPU mode to BNN mode. The instruction will send 

a special trigger signal to the bus controller, which contains 

the core mode state. 

3. Sw_L2, Lw_L2: two special write-through instructions for 

the data to be stored or loaded directly between the NCPU 

core and the global L2 memory. 

4. Trigger_BNN: a special instruction used to trigger the 

BNN accelerator core operation. This instruction is 

designed to operate as the conventional heterogeneous 

architecture for evaluation purposes.  

In addition to the above instruction extensions, there are 
several special transition neuron cells built at each neural layer 
to support temporal data storage for the operation mode 
switching. The instruction Mv_Neu can store the calculated 
configuration values e.g. run cycles of each neural network 
layer, to these transition neuron cells during CPU mode. After 
the operation mode switched to the BNN inference, the 
transition neuron values are directly taken as the neural network 
configurations. This transition neuron cell design enables 
flexible management using CPU instructions for the following 
BNN operations. 

VI. NCPU CHIP IMPLEMENTATION AND PERFORMANCE 

EVALUATION 

A. Neural CPU Chip Design 

To demonstrate the benefits of both single-core and dual-
core configurations, we implemented a two-core design of 
NCPU, as the top-level SoC architecture shown in Fig. 6. A 
global memory is shared by two NCPU cores. The memory can 
serve functionally as an incoherent L2.  Each core can access the 
L2 memory via new customized RISC-V load/store instructions 
which perform write-through behavior for stores. A DMA 
engine is designed to manage the data communication between 
the NCPU cores and the L2 memory. During the workload 
operations, these two NCPU cores can operate independently for 
different workload tasks, e.g. CPU programs or classify different 
images, or operate cooperatively, e.g. form a deeper neural 
network accelerator by connecting these two NCPU cores in 
series. We compared the NCPU design with baseline 
conventional CPU + BNN architecture showing two major 



benefits: (1) a single NCPU can obtain 35% area reduction and 
12% energy saving at 0.4V, (2) two NCPU cores scheme can 
achieve 43% end-to-end performance improvement or 
equivalent 74% energy saving by maintaining both cores at full 
utilization. 
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Fig. 6. The top-level architecture of the NCPU chip. 
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Fig. 7. Fabricated die photo and the chip specifications. 
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Fig. 8. Chip measurement setup for the use cases. 

B. Chip Specifications and Measured Performance 

The two-core NCPU test chip has been fabricated in TSMC 
65nm GP CMOS technology. The chip die photo and the design 
specifications are shown in Fig. 7. Two identical NCPU cores 
have been implemented on chip. The nominal operating 
frequency for the NCPU core is 960MHz at 1V. The overall 
active die area is 2.86mm2. The test chip measurement setup is 
illustrated in Fig. 8. The test chip is packaged by a QFN package 
and mounted on a PCB board. Altera DE-2 FPGA which 
communicate with a laptop is used as the interface to chip for 
the data communication. During the workload operations, the 
data is first transferred from FPGA to the on-chip global L2 
cache, which is then accessed by the cores. The transient power 
traces for each core were measured to monitor the core activities. 

To apply NCPU design for ultra-low power applications, the 
chip performance and energy consumption for different modes 
have been measured across a wide supply voltage range down to 
0.4V, as shown in Fig. 9.  The chip’s functionality has been 
verified by reading out all internal RF and memories after the 
benchmark run. At 0.4V, the NCPU core can operate correctly 
at frequency 18MHz, with the power consumption of only 

1.2mW for BNN inference and 0.8mW for CPU operations, 
which is significantly lower than that in Intel’s Movidius [10] 
and other commercial microcontrollers [53-56], as shown in 
Table 2. The minimum energy point (MEP) for CPU mode is 
observed at 0.5V, with the leakage power dominating below it. 
Due to the larger portion of dynamic power for the BNN 
inference, its MEP point is not observed before a malfunction is 
observed below 0.4V. The computing efficiency for BNN across 
voltages is also measured showing 1.6TOPS/W at 1V and a peak 
efficiency of 6.0TOPS/W at the voltage of 0.4V. 
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Fig. 9. The measured (a) power, (b) frequency, (c) energy consumption, and 

(d) power efficiency versus supply voltage for both BNN and CPU modes. 

TABLE II.  COMPARISON WITH COMMERCIAL MICROCONTROLLERS [53-56]. 

 [53] 
Microchip 

[54] 
TI 

[55] 
Microchip 

[56] 
SiFive 

NCPU 
(CPU mode) 

Datapath 8b 32b 32b 32b 32b 

CPU RISC ARM ARM RISC-V RISC-V 

Pipe Stage 2 3 8 5 5 

Vol. (V) 3 3 1.26 1 0.4-1 

Freq (MHz) 64 48 600 250 18-960 

Power (mW) 37.2 22.8 229 150 106 (1V) 

0.8 (0.4V) 

Performance 
(DMIPS/MHz) 

0.25 1.22 1.57 1.61 0.86 

Efficiency 
(DMIPS/mW) 

0.43 2.57 4.11 2.68 8.26 

TABLE III.  COMPARISON WITH STATE-OF-THE-ART ML ACCELERATORS. 

 [2] 
ISSCC’17 

[44] 
ISSCC’19 

[40] 
JSSC’18 

[41] 
ISSCC’18 

NCPU 
(BNN mode) 

Process 28nm 65nm 65nm 28nm 65nm 

NN Model FC FC FC Conv. FC 

Datapath 8b 8b 1b 1b 1b 

Dataset MNIST MNIST MNIST CIFAR-

10 
MNIST 

Accuracy 98.36 98.06 90.1 86.05 94.8 

Vol. (V) 0.9 0.8 1 0.8 0.4-1 

Freq (MHz) 667 20 400 10 18-960 

Power (mW) 33.7 23.6 0.6 0.9 241 (1V) 

1.2 (0.4V) 

Efficiency 
(TOPs/W) 

1.2 3.42 6.0 532 1.6 (1V) 

6.0 (0.4V) 

Table. 2 compares the performance of RISC-V CPU mode 
in NCPU with other commonly used commercial embedded 
microprocessors. The NCPU is able to run at 18MHz at 0.4V for 
ultra-low power applications, which is in line with other 
embedded microcontrollers. Due to low power consumption, the 
core efficiency of our design is in fact higher than the designs 



for standard Dhrystone benchmark run. Table. 3 shows the 
comparison with several previous state-of-the-art ML inference 
accelerators. The work in [2] is conventional heterogeneous 
architecture which requires both the host ARM CPU and a 
specialized DNN accelerator to support the fully connected 
neural network. Work [44] is adopting similar neuromorphic 
accelerator architecture with our work using the fixed 8-bit data 
path. Comparing with the state-of-the-art standalone BNN 
accelerators [40-41], the BNN operation mode of NCPU 
achieves a peak 6.0TOPS/W power efficiency at 0.4V, which is 
similar to [40]. 

C. Benefit and Overhead Evaluation 

To evaluate the design overhead for the proposed NCPU, we 
compare the area, power, speed between the proposed NCPU 
core with a standalone RISC-V core and a standalone BNN 
accelerator. The baseline standalone CPU core is an in-house 
designed single-cycle 5-stage RISC-V pipeline, which has the 
identical functionality and IPC as the CPU operation in NCPU. 
The baseline BNN accelerator has 4 layers (100 neurons/layer), 
which has the same number of neurons as the NCPU. The PPA 
of the standalone CPU/accelerator cores are evaluated using the 
final physical design after logic synthesis and place & route.  

Fig. 10 shows the area overhead of the NCPU core excluding 
SRAM and the overhead of the whole NCPU including SRAM. 
Comparing with the baseline BNN core, the area cost for 
realizing the NCPU pipeline stages excluding memory is 13.1%. 
Including both core and the SRAM memories (i.e. including the 
register file, instruction cache, weight memory, etc.), the overall 
area overhead of the NCPU design is only 2.7%. Comparing 
with a standalone BNN or a CPU core, the performance of the 
NCPU, i.e. maximum operation frequency, degrades only 4.1% 
and 5.2% for the two operating modes, respectively. 
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Fig. 10. The area and performance overhead of NCPU comparing with 

standalone CPU or BNN accelerator core. 

The power overhead evaluation is reported from dynamic 
power analysis by PrimeTime based on the cycle-by-cycle gate 
level simulation. The power consumption of the proposed 
NCPU is compared with a single standalone BNN accelerator, 
or a 5-stage RISC-V pipeline core design. Fig. 11(a) shows the 
comparison of power consumption. During BNN operation 
mode, the proposed NCPU consumes 5.8% more power than the 
standalone BNN accelerator for MNIST dataset inference due to 
the extra inserted CPU logic. For CPU operations, multiple 
embedded programs from the MiBench benchmark suite have 
been tested [47], which shows about 15% more power cost than 
a single CPU core. Fig. 11(b) also compared the power 
consumption for all supported RISC-V base instructions 
individually. An average of 14.7% more power is consumed for 
various instructions. The extra power cost mainly comes from 

the dynamic power of some ungated original logic inside each 
neuron cell. 

Although there are small hardware overheads between the 
NCPU and the standalone CPU or BNN core, the NCPU can 
achieve the area saving and energy reduction benefits when 
comparing with the conventional heterogeneous architecture.  
Fig. 12 compares the area among standalone RISC-V CPU core, 
standalone BNN accelerator and the NCPU. Comparing with the 
heterogeneous architecture including both CPU and BNN 
accelerator, a NCPU achieves 35.7% area reduction while 
maintaining the same functionality. The area saving is just one 
benefit of our reconfigurable NCPU architecture. As shown 
later, significant end-to-end performance gain (or equivalent 
energy saving) can also be obtained, addressing the often 
overlooked core under-utilization issue in conventional 
heterogeneous architecture.  

As shown in Fig. 12(b), the reconfigurable design leads to 
7.2% energy overhead of NCPU comparing with baseline 
heterogeneous cores at 1V for a MNIST inference task. 
However, as the leakage energy starts to dominate total energy 
consumption at ultra-low voltages, the area saving starts to 
convert to an energy saving below 0.6V and achieves 12.6% 
energy saving at 0.4V for the image inference task. 
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Fig. 11. (a) Power consumption comparison for both BNN acceleration mode 
the CPU operation mode, (b) power consumption overhead for the supported 

RV32I instructions. 
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Fig. 12. (a) Area reduction and (b) energy saving benefit of the Neural CPU. 

VII. END-TO-END IMPROVEMENT OF REAL-TIME USE CASES 

A. Benefit of Maintaining Full Utilization of Cores 

The proposed NCPU architecture can maintain full 
utilization of the cores by smoothly switching the operating 
modes with zero-latency. Hence the end-to-end performance is 
improved by eliminating any idle time within the cores. Fig. 13 
illustrates the end-to-end performance improvement by 
maintaining full utilization of cores for an image classification 
use case. During the experiment, the execution latency of the 
image BNN inference maintains the same. The fraction of the 
CPU workload, i.e. the CPU run cycles over the sum of CPU 
and BNN run cycles, is adjusted by changing the complexity of 
the image data pre-processing algorithms. For the workload with 
a high fraction of CPU operations, e.g. 70%, the NCPU 
architecture improves the overall end-to-end performance by 
41.2% compared to a baseline heterogeneous architecture. For a 
well-balanced workload between CPU and BNN accelerator, 
e.g. CPU workload fraction of 40%, the NCPU still shows an 
improvement of 28.5%. Therefore, significant end-to-end 
performance improvement can be obtained by resolving the core 
under-utilization issue. 

The end-to-end performance benefit has also been further 
evaluated with different batch sizes, e.g. the number of images, 
under the CPU workload fraction of 70%, as shown in Fig. 14. 
Large batch sizes help heterogeneous architecture to hide the 
data transfer latency and obtain higher end-to-end performance. 
Therefore, NCPU gains a little less end-to-end benefit with 
larger image batch size while still maintaining above 37% 
latency improvement with the batch size of 100. 
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Fig. 13. The core utilizations during runtime under the CPU workload fraction 

of (a) 40% and (b) 70%. 
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Fig. 14. The end-to-end performance benefit with sweeping of image batch size 

under the CPU workload fraction of 70%. 

B. Real-Time Use Cases 

To evaluate the real end-to-end performance gain for 
embedded applications, two real-time use cases have been 
evaluated on the test chip. There is a lack of established 
benchmarks for evaluating real-time ML end-to-end 
performance in low power devices. Consequently, we 
constructed two real-life embedded use cases, including image 
classification and human motion detection.  

Fig. 15 shows the workload breakdown of the CPU 
processing and BNN inference in the test cases. For the image 
classification use case, the CPU operation takes a batch of raw 
image pixel data (size: 224x224x3) and conducts several image 
processing functions, including image resizing, grayscale 
filtering, and data normalization [48-49]. These are common 
image processing algorithms required before the neural network 
classification [50]. After the raw image data has been processed, 
the NCPU core switches from CPU mode to the BNN mode to 
perform the image inference. The BNN model is trained using 
MNIST dataset achieving the classification accuracy of 94.8%. 
The CPUs operations take about 76% of the total runtime, which 
is similar to the study case from Intel’s IoT SoC [12]. It is worth 
mentioning that the data pre-processing tasks are normally 
managed by separate image signal processor (ISP) in modern 
mobile SoCs [51-52]. However, in ultra-low power embedded 
SoC, ISP is not an indispensable IP and CPU processes the 
majority of the general-purpose computing tasks. 

For the human motion detection test case, the BNN model is 
trained using the recorded accelerometer sensor data from 
Ninapro database [59], with 74% classification accuracy for 
simple motion activity detection. Six out of twelve channels of 
the accelerometer sensor signals were used in our study. Three 
time-domain features including mean and histogram for each 
channel were used for BNN classification [60]. The CPU 
operation is dominated by the feature extraction tasks and shows 
a workload fraction of 68%. 

As our design target is for resource-constrained low power 
embedded applications, the use cases have been tested on chip 
with the operating frequency of 50MHz, which is in line with 
other commercial microcontrollers’ speed [53-54]. For the 
human motion detection use case, only a single human gesture 
is detected and classified due to the slow human motion time 
scale in real-time applications. 
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Fig. 15. Runtime CPU and BNN workload breakdown for the use cases of (a) 
image classification, (b) motion detection, and (c) the real-time task operation 

sequence for the motion detection case. 

C. End-to-end Improvement Results 

To evaluate the end-to-end performance improvement, the 
use cases were tested on both baseline heterogeneous 
architecture, i.e. CPU core with BNN accelerator, and our 
developed two-core NCPU SoC. Fig. 16 shows the measured 
power traces during the runtime of the image classification use 
case under the NCPU peak performance. For the baseline 
heterogeneous architecture, the BNN core stayed idle at the 
beginning and waited for the CPU data pre-processing tasks to 
complete. The BNN accelerator was launched for the image 
inference only after received the processed data, and the CPU 
continued to process the pixel data for the second image. For the 
NCPU two-core configuration, both NCPU cores were 
reconfigured into CPU mode at the beginning to process two 
images simultaneously. After image processing completed, both 
NCPUs were switched for BNN inference. As the core 
utilization rate summarized in Table 4, comparing with the 
baseline configuration, i.e. CPU+BNN, NCPU SoC can 
maintain utilization more than 99% runtime. Therefore, for the 
same image classification task, the real-time end-to-end 
performance achieves a 43% speed up due to the reconfiguration 
of NCPU maintaining core full utilization. 

Fig. 17 shows the end-to-end performance improvement for 
the two use cases. With the significant improvement of the core 
utilization, i.e. realizing both cores at almost 100% utilization, 
the end-to-end performance of two-core NCPU scheme shows 
35% to 43% improvement comparing with the conventional 
heterogeneous architecture. Comparing the baseline 
heterogeneous architecture, the area of single NCPU is saved by 
35%, while the overall end-to-end performance is only degraded 
by 13.8%. Therefore, a single NCPU core can achieve 
significant area saving benefit with small end-to-end 
performance loss. The obtained end-to-end performance 
improvement can be equivalently converted to energy saving, 
which is highly demanded for the low power embedded 
applications. To obtain the energy saving, the supply voltage 
was scaled down while maintaining the same total execution 
latency. The achieved performance improvement for the image 
use case is converted into up to 74% energy saving under lower 
supply voltage.  Note that the power tracing was performed at 
1V so that the core activities can be easier distinguished due to 
high power consumption.  The same performance benefits can 
be observed at 0.5V.  
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Fig. 16. Measured power traces for image classification use case. 

TABLE IV.  THE CORE UTILIZATION RATES AT THE BASELINE 

HETEROGENEOUS SOC OR NCPU SOC CONFIGURATIONS. 

Mode/Utilization NCPU 0 NCPU 1 

Baseline CPU / 80.2% BNN / 39.4% 

2 NCPUs NCPU / 99.3% NCPU / 99.3% 
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Fig. 17. Fig. 16 End-to-end performance improvement for two use cases. 

VIII. DISCUSSION AND RELATED WORK 

A. Baseline Accelerator Selection 

In this work, the neuromorphic type BNN accelerator design 
[40, 44] is selected as the baseline architecture. The neuron cell 
design and their connections are analogous to the conventional 
CPU pipeline, which makes the reconfigurable NCPU design 
natural and low overhead. BNN architecture is chosen as it is a 
good compromise for low-power applications and matches well 
with the low-cost CPU. The selection of baseline BNN 
accelerator size needs to consider both the BNN model accuracy 
and the size compatibility with the CPU core. More neural 
network layers or neuron cells in each layer will increase both 
the model accuracy and area. Fig. 18 shows the area saving 
benefit and BNN inference accuracy with different neuron cells 
per layer. For different neural network sizes, i.e. neuron cell per 
layer varying from 50 to 400, the classification accuracy of the 
MNIST dataset can change from 88.6% to 97.2%. The area 
saving benefit of the NCPU compared with the conventional 
heterogeneous architecture reduces to 22.5% with the use of 400 
neurons. The tradeoff between the BNN inference accuracy and 
the area saving benefit leads to our design choice of 100 neuron 
cells per layer with a moderate BNN accuracy of 94% for 
MNIST database. In our NCPU SoC, deeper BNN with more 
layers can be supported by rolling back the BNN operation or 



connecting two cores in series. Smaller BNNs are supported by 
configuring NCPU layers using the developed ISA. 

One of the main targets for this work is to explore a new 
computing architecture to close the significant performance gap 
between neural network accelerator and conventional processor 
design for ultra-low power embedded devices. There is a 
significant architecture design space that can be further 
explored. Supporting multi-bit and complex DNN is definitely a 
future research direction. In fact, it may be easier to reconfigure 
a larger DNN accelerator into CPU pipelines due to the abundant 
hardware resources. But to better utilize the hardware resources 
of DNN, the reconfigured CPU pipeline will also be preferably 
scaled up into vector processing, SIMD, superscalar pipeline or 
multi-core. We hope our preliminary work here can inspire more 
development in this direction in the future. 

It is worth mentioning that similar reconfigurable NCPU 
architecture also can be implemented on FPGAs. However, due 
to the large resource consumption of FPGA, it will entail orders 
of magnitude greater power overhead than the ASIC 
implementation in this work. For the resource-constrained edge 
devices, our NCPU design can provide lower cost and better 
power consumption than FPGA solutions. 
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Fig. 18. Area saving with different accelerator size. 

B. Prior Related Work 

The motivation of this work is to explore a new architecture 
solution to reconcile the difference between the conventional 
CPU microprocessor and the popular neural network accelerator 
in cost and power constrained systems. Previously, in-memory 
computing is utilized to bring neural network computation 
inside the memory storage to reduce the data transfer cost [29-
30]. A more recent in-memory computing scheme further 
supports flexible ALU instructions, e.g. addition, subtraction 
and the multiplications, in SRAM [31]. However, the support of 
highly programmable general-purpose computing is still 
challenging for those in-memory computing schemes.  

To improve the heterogeneous design, several CPU-
accelerator interfaces have been studied and adopted in 
heterogeneous SoC to couple the cores tightly and reduce the 
workload offloading cost [14-16]. For example, the RoCC 
interface is adopted for communicating data between the RISC-
V CPU caches and the BNN accelerator. Comparing with [14], 
our work proposes a different reconfigurable architecture 
solution to solve the offloading challenge and avoid the 
complicated heterogeneous interface designs. Our evaluations 
do not consider the area/power overheads of the RoCC interface 
which will add to the overheads of the CPU+BNN baseline. 

There is also a research effort by Google trying to use the 
neural network to perform CPU operations. “Neural Turing 
Machine” is a representative work to use neural network to 
perform CPU operations, e.g. copy, sorting or complex query 

problems [32-33]. Similar memory augmented neural networks 
have been studied for cognitive operations [34-35]. A “neural 
arithmetic logic units (NALU)” architecture is proposed by 
Google in which a neural network is trained to perform some 
basic arithmetic operation, e.g. ADD, SUB, or MUL [36]. The 
above designs still remain at concept level with software 
implementation to date. As illustrated by our experiment in 
following, the cost of NALU is prohibitively high comparing 
with conventional digital design approach and hence is not 
suitable for a resource constrained SoC. 

C. NALU Architecture Experiment 

Previously, the concept of “Neural ALU” was proposed to 
train a neural network to learn and perform several basic 
arithmetic operations, e.g. ADD or MUL [36]. However, the 
prior study was only at conceptual level (software) and did not 
fully consider hardware cost. We evaluated the NALU concept 
from a hardware perspective and compare it with the 
conventional digital approach in term of power, area, etc. The 
NALU is a two layers fully-connected neural network, which 
can be trained using back propagation for 8-bit ALU operations, 
such as ADD, SUB, AND, XOR, with the mean squared error 
(MSE) as a cost function for back propagation. MSE error is 
scaled relative to a random initialized model, i.e. 100% is 
equivalent to random and 0% is perfect accuracy. As shown in 
Fig. 18(a), the NALU architecture performs well to learn 
ADD/SUB operation, while suffers from significant error for 
Boolean operation AND/XOR. When realizing both ADD and 
SUB simultaneously, NALU output almost become random for 
these ALU operations leading to training failure. Further 
experiments show that the output error can be gradually reduced 
with more hidden layers or neurons. However, given the single 
hidden layer architecture already causes significant design 
overhead as will be shown in the following, adding more hidden 
layers or neurons will make the hardware implementation 
infeasible. Therefore, results with only single hidden layer 
architecture will be shown here, which is same as [36]. 

The area and power cost of the implemented NALU are 
compared with the conventional digital implementation 
approach using TSMC 65nm process, as shown in Fig. 18(b). 
The post-layout result shows the NALU implementation for 
ADD cost about 17X area than a digital adder. The significant 
NALU area cost is due to the multiplication tasks for simple 
ALU operations such as ADD or AND in NALU architecture, 
which is very area and power costly. The neural network also 
requires large capacity of memory to store all the model weights. 
All these large area costs translate to significant cost in power 
consumption. Based on NALU experiment results, we 
understand that a straightforward implementation of neural 
network for CPU operations is not realistic for energy efficient 
implementation. However, these observations lead to the design 
approach of our NCPU architecture. 
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Fig. 19.  (a) The normalized error when NALU learns different ALU 
operations, and (b) NALU area cost comparing with the conventional digital 

design approach.    

IX. CONCLUSION 

In this paper, we propose a reconfigurable Neural CPU, 
which is a novel architecture suitable for ultra-low power 
applications with significant cost reduction and performance 
improvement. The proposed NCPU core supports the flexible 
programmability of RISC-V CPU as well as BNN inference 
acceleration. A NCPU SoC test chip was fabricated in a 65nm 
CMOS process. Compared to a conventional heterogeneous 
design, a single NCPU core achieves 35% area reduction and 
12% energy saving. With two NCPUs, the overall end-to-end 
performance achieves up to 43% performance improvement for 
two real-time use cases demonstrated on the test chip. 
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