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Despite recent progress on building highly efficient deep neural network (DNN) 
accelerators, few works have targeted improving the end-to-end performance of deep-
learning tasks, where inter-layer pre/post-processing, data alignment and data movement 
across memory and processing units often dominate the execution time. An improvement 
to the end-to-end computation requires cohesive cooperation between the accelerator 
and the CPU with highly efficient data flow management. Figure 15.2.1 shows the most 
commonly used heterogeneous architecture, containing a CPU core and an accelerator 
with data communication managed by a DMA engine. However, there remain the 
challenges of low utilization of PE cores and large latency due to the CPU workload and 
data movement across processing cores [1-4]. As shown in Fig. 15.2.1, in an end-to-
end deep learning task, the accelerator is often utilized at only 30-50% with the rest of 
time waiting for CPU processing and data movement between the CPU and accelerator 
cores. Some prior works have considered data compression, reduction of data movement 
or improvement of memory bandwidth. For instance, an accelerator coherency port (ACP) 
was designed to request data directly from the last level cache of the CPU instead of 
using the DMA engine to improve the efficiency of data transfer [3, 5]. In this work, we 
propose a new architecture, a systolic neural CPU (SNCPU), which fuses the operation 
of a conventional CPU and a systolic CNN accelerator in a single core. The contributions 
of this work include: 1) The proposed SNCPU architecture can be flexibly reconfigured 
into a multi-core RISC-V CPU or a systolic CNN accelerator, leading to PE utilization of 
over 95% for end-to-end operation; 2) with an overhead of less than 10%, the CNN 
accelerator can be reconfigured into a 10-core RISC-V CPU to improve throughput 
significantly compared with a conventional heterogeneous architecture having a CPU 
and an accelerator; 3) with a special bi-directional dataflow, expensive data movement 
for inter-layer pre/post-processing across cores can be avoided; 4) we demonstrate the 
SNCPU through a 65nm test chip with 39-to-64% latency improvement and 0.65-to-
1.8TOPS/W energy efficiency on end-to-end image-classification tasks. 
 
Figure 15.2.2 shows the chip architecture and supported configurations. A reconfigurable 
10×10 PE array serves as the central computing tiles. Each lane of the PE array, i.e. each 
row or each column of PEs, can be configured as either systolic MAC operations for the 
CNN accelerator or CPU pipeline stages. The accelerator mode supports typical systolic 
dataflow with weight-stationary operations. In CPU mode, each row or column of 10 PEs 
is used to realize RISC-V pipelines. Associated SRAM banks are also reconfigured for 
both purposes. In accelerator mode, an accumulator (ACT module) for each row or 
column provides additional SIMD support for pooling, ReLU functionality and 
accumulation. Although data stays mostly local within the reconfigurable SRAM banks, 
L2 SRAM banks are also added to enable data exchange between different CPU cores 
during data processing in CPU mode. A hybrid RISC-V and accelerator mode is available, 
where half of the PE cores are configured into CPU and the other half are configured into 
the systolic CNN accelerator.   
 
Figure 15.2.3 illustrates the construction of a 32b RISC-V CPU pipeline from a systolic 
PE array. Similar to a typical accelerator design, each PE in this work contains a simple 
pipelined multiplication-accumulate (MAC) unit with 8b-wide inputs and 32b at 
accumulation output. As shown in Fig. 15.2.3, the very first PE in a row or column reuses 
the MAC’s adder and 32b registers as PC for the instruction cache address. Two PEs are 
used as the IF stage for instruction fetch with a reuse of the internal 32b register and 8b 
input registers. Two PEs are reconfigured into the decoder stage (ID) where the logic in 
the 8b multiplier and 32b adder are reused to generate control signals by performing 
numerical/logical operations with the op-code or func-code of instructions. Three PEs 
are combined into the execution stage (EX), including one PE serving as ALU with 
additional logic for Boolean operations and a shifter, one PE to generate a new instruction 
cache address for branches, and one PE used as the registers to pass the execution 
results. The last two PEs are reconfigured into the memory stage (MEM) and write-back 
stage (WB) by reusing registers with additional MUX logic. With an emphasis on logic 
sharing, the reconfiguration reuses 64-to-80% of the original PE logic for CPU 
construction. Compared with the original systolic CNN accelerator, the area overhead to 
include CPU functions is 3.4% in the PE-array, 6.4% in the memory, e.g. instruction and 
RF, and overall less than 9.8% for the whole processor. Extensive clock gating is used 
to eliminate redundant power consumption from the additional logic in both CPU and 
CNN modes. The power overhead for the CNN accelerator is about 15% compared with 
the baseline original design.  
 
 

The SNCPU architecture allows the majority of data to be retained inside the processor 
core, eliminating the expensive data movement and DMA module. To enhance data 
locality, a special dataflow sequence for CNN operation is adopted combining the 2 
configurable modes (CPU, accelerator) and 2 directions (row-based and column-based). 
Figure 15.2.4 shows the four different configurations for dataflow with activated modules 
highlighted in the figure. The column-accelerator mode dataflow is exactly the same as 
the conventional weight-stationary systolic array. Each “AOMEM” SRAM bank is used 
as input memory for every row and each AOMEM bank in every column serves as output 
memory to store accumulated results. Input data goes through every PE from right to 
left and the accumulation results pass down from ROW0 to ROW9. Instruction caches 
are gated during accelerator mode. As for the row CPU mode, every row can be 
configured as a 5-stage pipelined core, with every row’s AOMEM banks serving as data 
cache. Instructions are passed from left to right. In the other directional scenario, the 
PEs in row-accelerator mode get the inputs from the bottom AOMEM banks and store 
the results in the right AOMEM banks, which is an orthogonal direction of dataflow 
relative to column-accelerator mode. The column CPU passes the instructions from the 
top instruction caches, while the bottom AOMEM banks are reconfigured to data caches, 
which allows one column of PEs to be reconfigured into one RISC-V CPU pipelined core.   
 
Figure 15.2.5 shows the special 4-phase dataflow utilizing the four different 
configurations from Fig. 15.2.4 for end-to-end image classification tasks. In a 
conventional architecture, the DMA engine is used to transfer input data from the CPU 
cache to the scratch pad of the accelerator, which is avoided in the 4-step dataflow of 
the SNCPU. First, the SNCPU operates in row-CPU mode to perform input-data 
preprocessing, e.g. image reshape, rotation, normalization, grayscale for the CNN. 
Second, the SNCPU operates in column-accelerator mode with the data caches from the 
CPU mode reused as input memory for the CNN accelerator. Third, after the accelerator 
finishes the entire layer of the CNN model, the SNCPU reconfigures to column-CPU mode 
to perform the data alignment, padding, duplication, post-processing by directly using 
the data from the output memory from the previous accelerator mode. Fourth, the SNCPU 
switches to row-accelerator mode to process the second layer of the CNN by directly 
using the data cache from previous CPU mode. The 4-phase operation repeats until all 
CNN layers are finished, eliminating intermediate data transfer across cores. In addition, 
as the SNCPU can be configured into 10 CPU, cores which can perform 10 separate 
instructions at the same time, a significant improvement in CPU pre/post-processing is 
achieved compared with a conventional CPU+CNN architecture. As shown in Fig. 15.2.5, 
we implemented an end-to-end image classification operation using 8b quantized VGG16, 
ResNet18, 3-layer ELU models on CIFAR-10, ImageNet and MNIST datasets. Results 
show 39-to-64% improvement in latency compared with a conventional heterogeneous 
accelerator architecture, i.e. Gemmini [4]. The 64% latency improvement breaks down 
as: 33% from 10-core CPU parallel processing and 31% from eliminated data 
movements. For workloads requiring less CPU or data movements, fewer benefits are 
observed, as in the case for the MNIST dataset.  
 
A 65nm test chip was fabricated and tested at a nominal supply of 1.0V. Figure 15.2.6 
shows the measurement results and a comparison table with prior work. A power trace 
illustrates the 4-phase operation with continuous core utilization above 95% in both CPU 
and accelerator mode. Power, frequency and CNN energy efficiency are showed in Fig. 
15.2.6 with a supply voltage scaling from 1.0V down to 0.5V. 0.66-to-1.8TOPS/W energy 
efficiency at 8b integer precision is achieved. Compared with a prior reconfigurable binary 
neural network (BNN)-based design [6], this work converts a commonly used 8b systolic 
CNN accelerator into 10 CPU cores offering significantly higher performance and a 
broader set of use cases. In comparison with a conventional CNN accelerator+CPU 
architecture, a latency improvement of 39% to 64% is observed in our case study. Figure 
15.1.7 shows the die photo and chip specifications. 
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Figure 15.2.1: Challenges of the conventional heterogeneous architecture, and the 
proposed systolic neural CPU architecture with benefits. Figure 15.2.2: Top-level chip architecture and supported configuration modes.

Figure 15.2.3: Reconfiguration of the PE array into RISC-V pipelines and 
reconfiguration overhead.

Figure 15.2.4: Configurations of 2-direction 2-mode dataflow and related memory 
reuse scheme.

Figure 15.2.5: Data locality for end-to-end processing and benefits compared to a 
conventional design. Figure 15.2.6: Measurement results and comparison table.
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Figure 15.2.7: Die micrograph.


