Check for
Updates

LLM-MARK: A Computing Framework on Efficient
Watermarking of Large Language Models forAuthentic Use of Generative Al
at Local Devices

Shiyu Guo, Yuhao Ju, Xi Chen, Jie Gu
Northwestern University, Evanston, IL
{ ShiyuGuo02021, YuhaoJu2017, XiChen2020}@u.northwestern.edu, jgu@northwestern.edu

Abstract—As generative Al such as ChatGPT rapidly
evolves, the increasing incidence of data misconduct such as
the proliferation of counterfeit news or unauthorized use of
Large Language Models (LLMs) presents a significant
challenge for consumers to obtain authentic information.
While new watermarking schemes are recently being proposed
to protect the intellectual property (IP) of LLM, the
computation cost is unfortunately too high for the targeted
real-time execution on local devices. In this work, a specialized
hardware-efficient watermarking computing framework is
proposed enabling model authentication at local devices. By
employing the proposed hardware hashing for fast lookup and
pruned bitonic sorting network acceleration, the developed
architecture framework enables fast and efficient
watermarking of LLM on the small local devices. The
proposed architecture is evaluated on Xilinx XCZUI5EG
FPGA, demonstrating 30x computing speed-up, making this
architecture highly suitable for integration into local mobile
devices. The proposed algorithm to architecture codesign
framework offers a practical solution to the immediate
challenges posed by LLM misuse, providing a feasible
hardware solution for Intellectual Property protection in the
era of generative Al

l. INTRODUCTION

The recent advancements in generative Al enable high-quality
text generations that are difficult to distinguish between human or
machine origins. While the generative Al offers powerful new
capabilities for human assistance such as customer support, content
creation, essay composition, education and tutoring, etc., the recent
explosive use of such technology calls for an urgent action for
implementing security measures on the large language models
(LLM). Malicious usage of LLM such as plagiarism in academic
activities, forged generations of news or articles, unauthorized use
of copyrighted models poses significant threats to the integrity of
information contents in social media, education channels and daily
communications. As one of the recent announcements, major Al
companies, such as Open Al, Googles, have pledged to provide
watermark techniques for the Al-generated text contents.

Despite the significant efforts being poured into the
authentication of the generated contents of LLM, a viable
watermarking technique for LLM is still under development.

This work is licensed under a Creative Commons Attribution International 4.0 License.
DAC '24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3656545

Although a deep neural network (DNN) watermarking framework
was proposed in [1], it cannot be directly used for language models.
For LLM models, two types of watermarking techniques are
commonly used. The first type of techniques uses “Posthoc

Detectors” which incorporates heuristics or model-based
characteristics to detect the differences between natural languages
from human being and the machine-generated models. This
method does not alter the outputs of the LLM models for
detection. For example, the GLTR [2,3] detector applies the
solution based on statistical methods that can detect generation
artifacts to check whether the text isgenerated by a model. The Al
classifier [4] is a detector from OpenAl to distinguish Al-generated
text bydetecting false claims through a trained model. The method
is not fully reliable due to the limitations on short text and the
potential misleading human written text for evading the detection.
Another model based detector, DetectGPT [5], uses only log
probabilities computed by the model and random perturbations of
the passage from another generic pre trained model instead of
separate training procedure and extra datasets. As the LLM is
being rapidly developed to behave indistinguishable to the human
natural speeches, the post-hoc approaches face difficulty in
achieving detection accuracy. A second class of the watermarking
techniques, as recently being proposed by [6], employs the use of
LLM to influence the content being generated so that the generated
text follows certain characteristics that can be detected by the users
holding the keys which are used in the generation process. This
type of watermarking techniques requires sophisticated changes or
appendages to the generated texts with a balance between
detectability and quality of the text. The benefits of this technique
are as follows: (1) the detection can be performed without
knowledge of the model parameters, (2) no retraining is needed to
the LLM, (3) watermarks can be detected by only a portion of the
text, (4) confidence score is available to quantify the watermarking
results, (5) watermarks cannot be removed or evaded without
significant modifications. As a result, this technique represents the
state-of-the-art watermarking method for the current LLM. Asan
example shown in Fig. 1 from the watermarking method in [6], by
embedding the watermarking pattern in the text, the watermarking
can be detected while remaining indiscernible to humans.

With
Watermark

Input No
Text Watermark

2 Score No | Z Score w/
Watermark |Watermark

[...]Then the study team
assessed the response of two
ophthalmologists who viewed
and rated the pictures on a
desktop PC and did the same
on an iPhone. \n The results of
the study, published in the
Archives of Ophthalmology,
show that the doctors found
the iPhone images good or
better than desktop images
and rated them high. \n While
one

iphone was better than the
other, the iPhone images were

better than desktop images. \n
A common misconception
with ophthalmologists, they
say, is that the images should

be viewed in a progressive
way. \n However, the study
suggests that the images may
be viewed in a way that is
more progressive in nature,
and that there may be better
responses to the images.|...]

iphone was able to get the
highest resolution images of
the inner eye to be seen by
the other, the researchers
found that the pictures were
not as good as the actual
picture. \n The researchers

found that the image quality)|
was improved by using
smartphone apps such as
DoF (de facto FOV) and Dol
(defacto FOV).[...]

-0.46

11.45

Fig. 1. Watermarking of LLM example [6].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656545&domain=pdf&date_stamp=2024-11-07
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656545&domain=pdf&date_stamp=2024-11-07

While the watermarking method in [6] offers a viable
direction for authentication of the LLM models, the computation
cost for generation of watermarks is very high. As will be shown
in Section 2, the vocabulary lookup and entropy sorting operations
cause even more runtime than the LLM model by itself on a high-
end processor. As many applications for authentic use of LLMs
require local execution of LLM model as protected IPs, running
watermarking tasks at local devices suffer from the limited
computing resources offered by mobile processors or low-cost
dedicated silicon solutions such as small FPGAs. To overcome
this challenge, this paper proposes a computing framework LLM-
MARK for watermarking LLM models specially for resource-
constrained local devices. The contributions of this paper include:
(2). It is the first algorithm and architecture codesign of the LLM
watermarking for generative Al model authentication and IP
protection. (2). Special Toeplitz hash function is developed for
both algorithm and hardware to accelerate the lookup procedure
and green list generation by 243x for watermarking and detection.
(3). The pruned bitonic soring network is implemented to reduce
the latency of large vocabulary logit vector soring by 34.7x.
(4) End-to-end evaluation on Xilinx XCZU15EG FPGA shows
total 30x run cycle reduction for watermarking LLM results and
22.8x run cycle reduction for watermark detection.

. BASELINE WATERMARKING ALGORITHM FOR LLMs

Fig. 2 (a) shows the data flow of the watermarking process [6].
The prompt text is sent to LLM for next-token prediction. During
each iteration, there will be a prediction logit vector from the
transformer model representing the possibility for the next token.
The watermark processor generates a random “green list” for each
token. The possible following tokens are checked against the
generated green list. The word in the green list is given higher
possibility to be used for the next token. This process manipulates
the probability distribution of the logic vector and sampling the
next token based on the watermarked distribution. As a result, the
generated text will be biased toward the green list. The watermark
detection is based on the statistical probability of the green list
appearance in the result. To control the text quality, bias is chosen
so that only tokens with lower impact to text quality will be
replaced by a green list tokens.

Prompt Text Prompt Text ‘ Runtime Breakdown
..... H850 o,
H

=
E

= L
Z Logit Vector

Green List

%,

S
2

1
1

I

I

1

!

. |

Hit]

Hit Token List | |
i

1

1

1

1

1

1

GreedT
Prediction List

Run time (s)

Execution
bottleneck
X

Update Logit Vector

Detection—&

(a) (b)
Fig. 2. (a) Processing flow of watermarking method. (b) Runtime
breakdown of the watermarking operation in a microprocessor.

Algorithm 1 shows more details of the algorithm. Firstly, by
providing a sequence of prompt text to the LLM, an output logit
vector for the whole vocabulary list |V/| is generated for each word.
Next, by using user-defined permutation scheme, a “green list”
with size of y x |V/| is generated. Third, the processor will sort the
logit vector and check N most possible token from the sort result,
for all the “green list” logit, add 8 to the logit vector, and proceed
to the next iteration.

Since the watermarked distribution is generated without
knowledge of the green list bias, z score for watermarking
detection can be defined as:

7= 2(ISlg-T/2) (1)

T
|S|¢ is the number of green list tokens. T is the number of tokens.
The text is considered as watermarked if the z score passes a certain
threshold.

To evaluate the hardware costs of the technique, we run the
algorithm on local personal devices, i.e. AMD 3995WX CPU with
128 threads and NVIDIA RTX A6000 with a small LLM model
OPT-125M [7] as used in the original method. Fig. 2 (b) shows the
runtime breakdown. For example, a vocabulary size of 50272 is
used in the experiment. The green list takes a fraction of the
vocabulary list, e.g. 10%~40%, which is a large array for the
watermarking process. It is observable the watermarking operation
exceeds the runtime of the transformer model which is used to
generate the text. The primary computation tasks for the
watermarking process include greedy prediction lookup, sorting
and green list generation, generating significant runtime overhead
to the LLM model. In this work, an acceleration architecture is
proposed and implemented in hardware to reduce the major
execution overhead in end-to-end watermarking applications with
a special of focus on the three major computing tasks, i.e. lookup,
sorting and green list generation.

Algorithm 1 Watermarking Algorithm with Input Prompt

Require: prompt, s(_n,),-..,S(-1)
green list size, v € (0,1)
hardness parameter, § > 0
:fort=0,1,... do
2 Apply the language model to prior tokens s(_), ..., s(t—1) to get a logit

—

veetor 1) over the vocabulary.
Compute a hash of token s~ and use it to seed a random number
generator.
4: Using this random number generator, randomly partition the vocabulary
into a “green list” G of size [7|V]], and a “red list” R of size [(1 —~)[V]].
5 Add 4 to each green list logit. Apply the softmax operator to these
modified logits to get a probability distribution over the vocabulary.
el 4] wy Bl
6 = izz(¢ (103, exp(1l)’

exp(18?)
Yiea uxn(lf”+6)+2’(R “"V(l(r”) ’
7 Sample the next token, s), using the watermarked distribution p).
8: end for

ke R.

I1l. PROPOSED ARCHITECTURE AND ALGORITHM CO-DESIGN

A. Efficeint Hash model for Green List Generation and Lookup

As the original lookup operation takes significant amount of
memory search and value comparison, e.g. O (size of green list), for
each token, to ease the major computational bottleneck shown in
Fig. 2(b), a hardware efficient hash function is proposed in this work
to speed up the green list generation and lookup operation. A hash
function returns the lookup result in one cycle and takes an use-
defined key (16 bit in the proposed scheme) for private green list
generation. The main properties of a hash function include:

1) One-way property: for a mathematical function converting a
variable-length input to a fixed-length result that is
computationally difficult to invert.

2) Weak Partial preimage resistance: for a given hash function h(x)
for input X, it is infeasible to find any partial input that can be
used to construct a full input that hashes to a given hash value.

3) Weak Collision resistance: for a given input and its hash, it is
difficult to find a different input b such that:

h(a) = h(b),a +b 2)

In this work, we choose to implement an efficient encrypted
hash function based on Toeplitz hash scheme which is more
hardware friendly for implementation. The Toeplitz function is
described as the following:

Let 4 be a nxn matrix. The Toeplitz matrix is defined as:

Ay 41 A a_(n-1)
a; a, a4 -, :
A = a_q a_, (3)
: E a; Qag a_q
an—l “ee “ee az al ao

The Toeplitz hash function has the property of A; ; = A;y ;41
and for each column in the matrix, the value is obtained from the
consecutive column by shifting down 1 bit and adding one bit at the
top.

Let M be the input key consisting of m bits data. Define ha(M)
as the hash result by multiplying A with transposed M as shown in
Algorithm 2.

To support the hash function presented in Algorithm 2, (m+n-
1) bits from hardware are needed to define the whole Toeplitz
matrix instead of nxm bits, which results in a significant saving in
the hardware resources. Linear Feedback Shift Register (LFSR)
circuit is implemented in this work for the generation of the Toeplitz
matrix because of its low power and low hardware resources
properties [8, 9]. The Toeplitz matrix is formed by providing the
initial state of the LFSR starting from the bottom as the first column
of the matrix and shifting down the previous column by one bit and
adding the new bit from LFSR to the top each clock cycle.

Algorithm 2 Toeplitz Hash Function

1: procedure TOEPLITZHASH(M, h(x), 5)
24 n < degreeofh(x)
3 m < lengtho fmessage M
4 Initialize LF'SR with h(x) and state s = (sg,s1,...,8,-1)
5: Generate LFSR sequence (So, S1,- ., Smyn-—2)
6: Initialize Toeplitz matrix 1" of size n x m
- fori=0ton—1do
8: for j=0tom—1do
9: T[i, j] < Sitj
10: end for
11: end for
12: Initialize hash value H < 0
13: for j=0tom—1do
14: H « H& (M[j]-T[][5)
15: end for
16: return H

17: end procedure

However, by limiting the connections of the LFSRs to
irreducible polynomials, the distribution of the hash function is e-
balanced for a small ¢ [X]:

VM #0,¢,P, (h(M) =c)<e¢ 4)
e<)

where M is the Toeplitz matrix, P, (h(M)) denotes the probability
of h(M) when h € H, where H a set of hash functions. For a 16-bit
input with a 32x32 Toeplitz hash matrix, the maximum deviation
e =~ 0.000000022, minimizing the probability of any particular
outcome deviating significantly from the average probability of all
outcomes.

B. Pruned Bitonic Sorting Network (PBSN)

The watermarking algorithm, as introduced in Section II,
necessitates sorting the vocabulary based on the logit vector derived
from the Transformer for checking the most possible token
candidates in green list. The sorting operations are the second

largest computing tasks in watermarking process due to the large
size of its target list, i.e. 65536 words in the vocabulary.

=P Prune
—p» Ascending Bitonic sorting
—p» Descending Bitonic sorting
[Ascending Order Vector
[pescending Order Vector

Fig. 3. Flow chart for PBSN algorithm.

The indexes corresponding to the largest k logit values can
provide fixed biasing to its logit values if the indexes are shown in
the green list as well. Sorting a large vocabulary logit vector and
retrieving the largest k values demands a highly performant
algorithm. In comparison to widely used sorting algorithms such as
quicksort, merge sort, selection sort, and heapsort, the bitonic
sorting network [10, 11, 12] exhibits superior parallelism suitable
for specialized hardware implementation. Given that our target
platform is an FPGA, which offers hardware support for parallel
processing and storage, we choose bitonic sorting network as the
baseline sorting method. As shown in Fig. 3, the key principle
underlying the bitonic sorting network involves initially sorting a
logit vector in "ascending-descending” order and subsequently
utilizing the bitonic merging function to sort it into "ascending"
order. For the large vocabulary logit vector, the bitonic sorting
network initiates the sorting process by handling small sub-vectors
with a length of 4. It then iteratively extends this sorting procedure
to larger sub-vectors until the entire logit vector is effectively
sorted.

Algorithm 3 Pruned Bitonic Sorting Function

Input: array : the 1-D array need to be sorted
k : largest k values in the array
Qutput: array : sorted array

: direction = ascending or descending
. n = length(array) = 2™, m is an integer and m > 2
- BITONICSORT(array, ascending, k)
: function BITONICSORT (array, direction, k)
BrToNICSORT(array(l : n/2|, ascending, k)
BitoNicSoRrT(array[(n/2)+1 : n], descending, k)
PruNEDBITONICMERCGE(array, direction, k)
return array
- end function
: function PRUNEDBITONICMERGE(array, direction, k)
for i« 1 ton/2do

if arrayfi] and arrayfi+n/2] are in a wrong order then

Exchange array [i] and array [i+n/2]

end for
PRUNEDBITONICMERGE(array[l : n/2], direction)
PRUNEDBITONICMERGE(array[(n/2)+1 : n], direction)
if n > £ then

ascending: array = array [n-k : n]

descending: array = array [1 : k|
20: return array
21: end function

L
NESomNo o R wN D

S
107 100} R I (N e o

To optimize the efficiency of the watermarking, only k, e.g. 64
most possible tokens are checked against the green list. To sort and
pick indexes of the largest k logit values, we devised a pruned
bitonic sorting network, or PBSN. The proposed PBSN method
aims to reduce processing time and eliminate redundant sorting
efforts for logit values that cannot possibly be among the top k
values in the final results. The details of the PBSN are introduced
in Algorithm 3. Within the bitonic merging function, a length check
is implemented after sorting of the sub-vector, selectively retaining
only the largest k values and disregarding the remaining values in

the sub-vector. Intuitively, if an element does not belong to the
largest k values within a sub-vector, it cannot be among the largest
k values for the entire vocabulary logit vector. In Table 1, a
comparison of average time and space complexity with other well-
known sorting algorithms is presented. The proposed pruned bitonic
sorting algorithm theoretically achieves significant latency
improvement compared with bitonic sorting without pruning, given
that k in the watermarking algorithm is notably smaller than the logit
vector length n, e.g. 65536. The complexity for bitonic sorting
assumes using n/2 comparators whose hardware cost will be
described in the next section.

Table 1. Time and space complexity of pruned bitonic sorting
compared with existing sorting algorithms.

Algorithm Bitonic Pruned Bitonic
0O(log2n) |O(log(n/k + 1)*log?k)

0O(nlog2k)

Bubble Sort | Quick Sort | Merge Sort

Time Complexity o(n?) O(n logn) | O(n logn)

O(logn) O(n)

Space Complexityl O(1) O(nlog?n)

C. Top-level Architecture for LLM-MARK

Fig. 4 shows the top-level architecture of the proposed
watermarking processor design targeting FPGA implementation.
The input data is the logic vector from LLM output, which is stored
in prediction buffer while the vocabulary list is stored in the
watermark buffer. The Pruned Bitonic Sorter sorts the logit vector
from the prediction buffer and the sorting result is sent to Hash
Network for lookup. The LLM-MARK Control updates the lookup
result to the watermarking list to modify the logit vector in the
prediction buffer for the next iteration input to LLM.

Input Data

l Watermark List +

LLM-MARK Control

LX)

| Pre:diction Buf%er | | Watermark Buffer |
¥ ¥ A |

l Sorfing GiobalB | |[(Y ™~ Hash Network
Pruned Bitonic Sorter Hp| KR | ..

Fig. 4. Top-level Architecture of proposed watermarking processor.

IV. HARDWARE MAPPING AND EVALUATION RESULT

In this section, the hardware mapping, quantization effects and
evaluation results are shown. The design is implemented on a
Xilinx XCZU15EG UltraScale+ FPGA for evaluation. Fixed
integer numbers are used for watermarking process compared with
floating point in baseline algorithm.

A. Quantization Impact on Watermarking

The logit vector from LLM model represents the probability
values for each possible token which will be processed by the
proposed watermarking processor. Due to the fixed integer
representation in this work, the probability value is quantized
leading to loss of the differentiation among the words in the green
list. Fig. 5 shows the quantization loss and overall watermarking
confidence with different precision and different y (the percentage
of green list size to the overall vocabulary size) during
watermarking with the text input from the C4 (Colossal Clean
Crawled Corpus) dataset [13].

As shown in Fig. 5(a), the cosine similarity for the green list
generation during the first iteration starts to degrade from 12 bits.
As shown in algorithm 1, the green list are used for logit vector
probability modification, by doing so, the watermarking results are
observed with deviation, as plotted in Fig. 5(b). For all testing
cases, there is no watermarking loss for 16-bit compared with fp32,

and there is a large similarity drop around 10-bit which will cause
the watermarked text diverged drastically from the original
watermarked text. The z score also starts to degrade from 10-12
bits.

Quantization Loss on Green List Generation
with Different Green List Size y

> y=0.1 y=0.25
E
£
&
B
=
[
<
[G)

Bit Precision Bit Precision

y=05 y=0.75
Z
=
£
&
B
c
[
o
[G)

Bit Precision (a) Bit Precision

Quantization Loss on Watermarking
Result with Different Green List Size y

e
]
wv
N
T
Bit Precision Bit Precision
y=0.5 y=0.75
o
[e]
A
N
Bit Precision Bit Precision

(b)
Fig. 5. (a) Quantization loss on green list generation with different
green list size (first iteration). (b) Quantization loss on watermarking
result with different green list size (Vocabulary size = 50272).

B. Toeplitz Hash generation and lookup for Green list
generation

Fig. 6 shows the HW implementation of LFSR based Toeplitz
hash function. The Matrix LFSR (MLFSR) is used to construct
Toeplitz Hash Matrix introduced in algorithm 2. Each consecutive
state in MLFSR represents each column of Toeplitz Hash Matrix
with a feedback polynomial of degree 2n. The Key LFSR (KLFSR)
is used to encode the input key by XOR the key with the current
state and the feedback output of the KLFSR and is fed to Toeplitz
Hash Matrix for the result key stream for hash lookup.

By doing so, the periodicity of the proposed hash model is
(22" — 1)(2™ — 1) where n is the column length of the Toeplitz
matrix, m is the bit length of the input key.

K . size = 2n bits >

Matrix LFSR (MLFSR) 5

€ ®
2 | _ MatrixInitialization[] E ks
g 5 11 §|/BS
€5 L F L# L] E "':_
9 ‘g’ : : Toeplitz Hash Matrix : < &
29 (mxn) ' o 2
c s = 8
a 1| = (<)
o I I i - =

(G} S| (]

Key LFSR (KLFSR) il o

Tput [keylOl[key[il[key(2]] key(3] feviml Fiash Lookup
Fig. 6. Diagram for LFSR based Toeplitz hash

During green list generation, the throughput and efficiency of
green list generation is defined as:

T = Number of green list token generated

€ 7 Clock cycle taking to generate green list

(6)

Target greenlist size

€ 7 Total hash computing time (7)
For the most efficient and fast green list generation, we want to
improve Tywith the highest E,. Fig. 7(a) shows hash throughput
with different hash matrix size compared with the non-pipelined
baseline scheme. With different column + row bits numbers (26,
28, 30, 32), the average throughput of the hash function increases
by 14.5X. Fig. 8(b) shows the green list generation speed up
compared with the baseline scheme (Fisher-Yates shuffle [14]).
The average speed up is 13.5X with y = 0.1, 0.25, 0.5, 0.75.

Hash Throughput with Different Hash Matrix size
Baseline Hash [l Proposed Scheme

s - - . ____
Qo
-y
oo
>
2
= 13X 14X 15X 16X
2
®
£
(o]
=z
Col + Row bits a
Generation Speed up with Different Green List Size
Baseline Hash [l Proposed Scheme
c S
kel
©
3
v S
Q.
8 15.2X
[S}
o) ----1 14.6X
c
2 17xy 13.5xl v
(b)
Lookup Speed up with Different Green List Size
Baseline Search M Proposed Scheme
©
s S
b - -
o
8 471X
S 31X 157X 314X
c
=)
o
v v

(c)
Fig. 7. (a) Hash thoughput comparison. (b) Green list generation speed
up comparison. (c) lookup speedup on Xilinx XCZU15EG FPGA.

The proposed scheme is implemented on Xilinx XCZU15EG
FPGA, with pipelined generation and lookup scheme. As shown in

Fig. 7(c), the average speed up for different green list sizes for look
up is 243X, eliminating the major overhead of execution time for
green list generation and look up.

C. Pruned Bitonic Sorter Implementation

As illustrated in Fig. 8, the proposed sorter employing the
pruned bitonic sorting algorithm is constructed using 128 block
RAMs and a 128-element 16b digital comparator array in the
FPGA. Each logit data has a 16b index and a 16b value. A
dedicated 32*256b bus is designed to fetch the logit data from
block RAMs and store the partial sum results. Given the gap
between the substantial size of the vocabulary logit vector and the
limited hardware resources, multiple cycles, as well as the input
data management module and the finite state machine controller,
are required to complete a single iteration of the bitonic sorting
algorithm. The pruning function is integrated into the digital
comparator to selectively retain only the top k values from the
comparator output.

Block RAMs for logit values and index (256KB)

[Bank126 2KB| [Bank127 2KB]

32b logit e Baad
I Store
FSM | Sooeee, .- >
Control + "VI u +
[M Input Data{Management VIl
1
Digital Digital Digital

Com %ratoro Compgrator 1 LOU
| Comparator 64 | | Comparator 65 eee |Comparator 127

128 16b Comparator Array

Fig. 8. Architecture diagram for pruned bitonic sorter.

In the watermarking algorithm, the k is 40 and the length of the
vector (n) is 50272 based on the original algorithm [6]. One
limitation of bitonic sorting is that the n must be the power of 2 and
we address this through padding zeros. The FPGA evaluation
results for pruned bitonic sorter are shown in Fig. 9. The pruned
bitonic sorter achieves 4.9x run cycle reduction compared with
bitonic sorter without pruning and 34.7x speed up over the widely
used quick sorting algorithm.

FPGA Run Cycle Reduction FPGA Evaluation

10€6 v
JIX
Lut | e |BREKI 1o
oo a0, 22620
Usage |60467|8928 | 128 | 67
Utilization|17.796(1.319617.29620.49%

1 Quick Bitonic Pruned
Sort Sort Bitonic

Fig. 9. FPGA evaluation for pruned bitonic sorter.

D. FPGA Prototyping

The design of the proposed watermarking processor is
implemented on a Xilinx XCZU15EG FPGA board. Fig. 10 shows
a board that contains one Zynq UltraScale+ 15EG chip, 2GB of
DDR4 DRAM, and 3.7MB of SRAM. The watermarking design is
implemented on the board with 16-bit precision to pessimistically
prevent text degradation due to quantization loss, with the greenlist
size of 12566, vocabulary size of 50272 and an average of 80 new
tokens. 100 randomly selected results from C4 dataset are shown
in Fig. 10 (b). For watermarking with 16 bits, all the generated texts
are the same as the floating point watermark result. The z scores
for all the watermarked text are above 4.0, and the z score for
unwatermarked text are all below 4, thus the confidence for the
detection is 100%. The overall run cycle using C4 dataset is shown

in Fig. 10(b). Including the LLM execution, each generated token
has an average of 0.052s latency. The proposed scheme has 30X
speed up over watermarking generation and 22.8X speed up over
watermarking detection compared with the baseline
implementation on the FPGA. Fig. 10(d) shows the overall
hardware resources for this design.

@i FPGA Specification

SoC | XCZUI15EG-2FFVB11561
Logic
Cells 747K
DDR4 PL 2GB DDR4, 32bit
BRAM 26.2Mb
HlE & e

(a)
C4 Dataset Results for Watermarking Performance
__ 16b FP and 16b Int — Z-Score w, — Z-Score w/o
20 watermark Similarity Watermarl Watermark 1.2
16 1.0
>
0.8 £
0.6%
T E
04 &#»
0.2

0
1 25 50 75 100
Number of Examples

C4 Dataset Results for Latency

—_ - Watermarking - Detection

y (ms

] 25 50 75 100
Number of Examples
(b)
Total Benefit for Watermarking Total Benefit for Detection
1.2E6 3E5 Look up
Look Up B Computing
i Sorting . B Green List Generation
[} mGreen List Generation wn
20.8e6 Others 22e5
o) S
3 0.4£6 30.08 Sues
ane This Work Baseline This Work
(c)
Resources LUTs FFs BRAM 1/0
LLM-MARK 61063 9178 133 67
Utilization (%) 17.9 14 17.8 20.4
Power (W) 0.859 0.941 0.4 0.627
(d)

Fig. 10. (a) FPGA module in this work; (b) Latency and z-score of the
dataset examples; (c) Overall benefits of the proposd design; (d)
Resource usage on the FPGA.

V. CONCLUSION

In this work, we propose a hardware efficient watermarking
computing architecture framework with real-time processing on

local devices for the LLM authentication. By implementing a
toeplitz hash generation algorithm for green list generation and
look up procedure, and a pruned bitonic sorting network to sort
vocabulary logit vector, this architecture framework can achieve
30x latency reduction for text watermarking and 22.8x latency
reduction on watermark detection with the demonstration on
Xilinx XCZU15EG FPGA. The proposed algorithm to architecture
codesign framework offers a practical solution to the Intellectual
Property protection in the era of generative Al.

ACKNOWLEDGEMENT
This work was supported in part by NSF CCF-2008906.

REFERENCES

[1] N. Sheybani, Z. Ghodsi, R. Kapila, and F. Koushanfar, “ZKROWNN:
Zero Knowledge Right of Ownership for Neural Networks,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC), Jul. 2023, pp. 1-6.
doi: 10.1109/DAC56929.2023.10247798.

[2] S. Gehrmann, H. Strobelt, and A. Rush, “GLTR: Statistical Detection and
Visualization of Generated Text,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: System
Demonstrations, M. R. Costa-jussa and E. Alfonseca, Eds., Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 111-116.
doi: 10.18653/v1/P19-3019.

[3] X. Zhao, P. Ananth, L. Li, and Y.-X. Wang, “Provable Robust
Watermarking for Al-Generated Text.” arXiv, Oct. 13, 2023. doi:
10.48550/arXiv.2306.17439.

[4] “New Al classifier for indicating Al-written text.” Available:
https://openai.com/blog/%20new-ai-classifier-for-indicating-ai-written-
text.

[5] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn,
“DetectGPT: Zero-Shot Machine-Generated Text Detection using
Probability Curvature,” in Proceedings of the 40th International
Conference on Machine Learning, PMLR, Jul. 2023, pp. 24950-24962.
Auvailable: https://proceedings.mlr.press/v202/mitchell23a.html.

[6] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein,
“A Watermark for Large Language Models.” arXiv, Jun. 06, 2023. doi:
10.48550/arXiv.2301.10226.

[7] S.Zhangetal., “OPT: Open Pre-trained Transformer Language Models.”
arXiv, Jun. 21, 2022. doi: 10.48550/arXiv.2205.01068.

[8] E. Erkek and T. Tuncer, “The implementation of ASG and SG Random
Number Generators,” in 2013 International Conference on System
Science and Engineering (ICSSE), Budapest, Hungary: IEEE, Jul. 2013,
pp. 363-367. doi: 10.1109/ICSSE.2013.6614692.

[9] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based Key Generator
for the Niederreiter Cryptosystem Using Binary Goppa Codes,” in
Cryptographic Hardware and Embedded Systems — CHES 2017, vol.
10529, W. Fischer and N. Homma, Eds., in Lecture Notes in Computer
Science, vol. 10529. , Cham: Springer International Publishing, 2017, pp.
253-274. doi: 10.1007/978-3-319-66787-4_13.

[10] A. Salihu, M. Hoti, and A. Hoti, “A Review of Performance and
Complexity on Sorting Algorithms,” in 2022 International Conference on
Computing, Networking, Telecommunications & Engineering Sciences
Applications (CoNTESA), Dec. 2022, pp. 45-50. doi:
10.1109/CoNTESA57046.2022.10011382.

[11] “CPP11sort: A parallel quicksort based on C++ threading - Langr - 2022
- Concurrency and Computation: Practice and Experience - Wiley Online
Library.” Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.6606

[12] M. F. Ionescu and K. E. Schauser, “Optimizing parallel bitonic sort,” in
Proceedings 11th International Parallel Processing Symposium, Genva,
Switzerland: |IEEE Comput. Soc. Press, 1997, pp. 303-309. doi:
10.1109/IPPS.1997.580914.

[13] “allenai/c4 Datasets at Hugging
https://huggingface.co/datasets/allenai/c4

[14] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM,
vol. 7, no. 7, p. 420, Jul. 1964, doi: 10.1145/364520.364540

Face.” Available:

https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.6606
https://huggingface.co/datasets/allenai/c4

