

LLM-MARK: A Computing Framework on Efficient

Watermarking of Large Language Models for Authentic Use of Generative AI

at Local Devices

Shiyu Guo, Yuhao Ju, Xi Chen, Jie Gu

Northwestern University, Evanston, IL

{ ShiyuGuo2021, YuhaoJu2017, XiChen2020}@u.northwestern.edu, jgu@northwestern.edu

Abstract—As generative AI such as ChatGPT rapidly

evolves, the increasing incidence of data misconduct such as

the proliferation of counterfeit news or unauthorized use of

Large Language Models (LLMs) presents a significant

challenge for consumers to obtain authentic information.

While new watermarking schemes are recently being proposed

to protect the intellectual property (IP) of LLM, the

computation cost is unfortunately too high for the targeted

real-time execution on local devices. In this work, a specialized
hardware-efficient watermarking computing framework is

proposed enabling model authentication at local devices. By

employing the proposed hardware hashing for fast lookup and

pruned bitonic sorting network acceleration, the developed

architecture framework enables fast and efficient

watermarking of LLM on the small local devices. The

proposed architecture is evaluated on Xilinx XCZU15EG

FPGA, demonstrating 30x computing speed-up, making this

architecture highly suitable for integration into local mobile

devices. The proposed algorithm to architecture codesign

framework offers a practical solution to the immediate

challenges posed by LLM misuse, providing a feasible
hardware solution for Intellectual Property protection in the

era of generative AI.

I. INTRODUCTION

The recent advancements in generative AI enable high-quality

text generations that are difficult to distinguish between human or

machine origins. While the generative AI offers powerful new
capabilities for human assistance such as customer support, content

creation, essay composition, education and tutoring, etc., the recent

explosive use of such technology calls for an urgent action for

implementing security measures on the large language models

(LLM). Malicious usage of LLM such as plagiarism in academic

activities, forged generations of news or articles, unauthorized use

of copyrighted models poses significant threats to the integrity of

information contents in social media, education channels and daily

communications. As one of the recent announcements, major AI

companies, such as Open AI, Googles, have pledged to provide

watermark techniques for the AI-generated text contents.

Despite the significant efforts being poured into the

authentication of the generated contents of LLM, a viable
watermarking technique for LLM is still under development.

Although a deep neural network (DNN) watermarking framework
was proposed in [1], it cannot be directly used for language models.

For LLM models, two types of watermarking techniques are

commonly used. The first type of techniques uses “Post-hoc

Detectors” which incorporates heuristics or model-based

characteristics to detect the differences between natural languages

from human being and the machine-generated models. This

method does not alter the outputs of the LLM models for

detection. For example, the GLTR [2,3] detector applies the
solution based on statistical methods that can detect generation

artifacts to check whether the text is generated by a model. The AI

classifier [4] is a detector from OpenAI to distinguish AI-generated

text by detecting false claims through a trained model. The method

is not fully reliable due to the limitations on short text and the
potential misleading human-written text for evading the detection.

Another model based detector, DetectGPT [5], uses only log
probabilities computed by the model and random perturbations of
the passage from another generic pre-trained model instead of

separate training procedure and extra datasets. As the LLM is

being rapidly developed to behave indistinguishable to the human

natural speeches, the post-hoc approaches face difficulty in

achieving detection accuracy. A second class of the watermarking
techniques, as recently being proposed by [6], employs the use of

LLM to influence the content being generated so that the generated

text follows certain characteristics that can be detected by the users
holding the keys which are used in the generation process. This
type of watermarking techniques requires sophisticated changes or

appendages to the generated texts with a balance between

detectability and quality of the text. The benefits of this technique

are as follows: (1) the detection can be performed without
knowledge of the model parameters, (2) no retraining is needed to

the LLM, (3) watermarks can be detected by only a portion of the

text, (4) confidence score is available to quantify the watermarking
results, (5) watermarks cannot be removed or evaded without

significant modifications. As a result, this technique represents the

state-of-the-art watermarking method for the current LLM. As an

example shown in Fig. 1 from the watermarking method in [6], by
embedding the watermarking pattern in the text, the watermarking
can be detected while remaining indiscernible to humans.

Z-Score No
Watermark

Z- Score w/
Watermark

Input
Text

No
Watermark

With
Watermark

-0.46 11.45

[...]Then the study team

assessed the response of two

ophthalmologists who viewed
and rated the pictures on a

desktop PC and did the same

on an iPhone. \n The results of

the study, published in the

Archives of Ophthalmology,

show that the doctors found
the iPhone images good or

better than desktop images

and rated them high. \n While

one

iphone was better than the
other, the iPhone images were

better than desktop images. \n

A common misconception

with ophthalmologists, they

say, is that the images should

be viewed in a progressive
way. \n However, the study

suggests that the images may

be viewed in a way that is

more progressive in nature,

and that there may be better

responses to the images.[...]

iphone was able to get the

highest resolution images of
the inner eye to be seen by

the other, the researchers

found that the pictures were

not as good as the actual
picture. \n The researchers

found that the image quality
was improved by using

smartphone apps such as

DoF (de-facto FOV) and DoF

(de-facto FOV).[...]

Fig. 1. Watermarking of LLM example [6].

DAC '24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3656545

This work is licensed under a Creative Commons Attribution International 4.0 License.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656545&domain=pdf&date_stamp=2024-11-07
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656545&domain=pdf&date_stamp=2024-11-07

While the watermarking method in [6] offers a viable

direction for authentication of the LLM models, the computation

cost for generation of watermarks is very high. As will be shown

in Section 2, the vocabulary lookup and entropy sorting operations

cause even more runtime than the LLM model by itself on a high-

end processor. As many applications for authentic use of LLMs

require local execution of LLM model as protected IPs, running

watermarking tasks at local devices suffer from the limited

computing resources offered by mobile processors or low-cost

dedicated silicon solutions such as small FPGAs. To overcome

this challenge, this paper proposes a computing framework LLM-

MARK for watermarking LLM models specially for resource-

constrained local devices. The contributions of this paper include:

(1). It is the first algorithm and architecture codesign of the LLM

watermarking for generative AI model authentication and IP

protection. (2). Special Toeplitz hash function is developed for

both algorithm and hardware to accelerate the lookup procedure

and green list generation by 243x for watermarking and detection.

(3). The pruned bitonic soring network is implemented to reduce

the latency of large vocabulary logit vector soring by 34.7x.

(4) End-to-end evaluation on Xilinx XCZU15EG FPGA shows

total 30x run cycle reduction for watermarking LLM results and

22.8x run cycle reduction for watermark detection.

II. BASELINE WATERMARKING ALGORITHM FOR LLMS

Fig. 2 (a) shows the data flow of the watermarking process [6].

The prompt text is sent to LLM for next-token prediction. During

each iteration, there will be a prediction logit vector from the

transformer model representing the possibility for the next token.

The watermark processor generates a random “green list” for each

token. The possible following tokens are checked against the

generated green list. The word in the green list is given higher

possibility to be used for the next token. This process manipulates

the probability distribution of the logic vector and sampling the

next token based on the watermarked distribution. As a result, the

generated text will be biased toward the green list. The watermark

detection is based on the statistical probability of the green list

appearance in the result. To control the text quality, bias is chosen

so that only tokens with lower impact to text quality will be

replaced by a green list tokens.
Runtime Breakdown

R
u

n
 t

im
e

(s
)

Execution
bottleneck

(b)(a)

Logit Vector

Vocabulary

Text Generation

LLM

Key

Permutation

Green List

Sort

N
ex

t
It

er

Update Logit Vector

Greedy
Prediction List

Hit Token List

Hit

LLM

Watermarking Process

Prompt Text
Input

Prompt Text
Output

Detection

Fig. 2. (a) Processing flow of watermarking method. (b) Runtime

breakdown of the watermarking operation in a microprocessor.

Algorithm 1 shows more details of the algorithm. Firstly, by

providing a sequence of prompt text to the LLM, an output logit

vector for the whole vocabulary list |V| is generated for each word.

Next, by using user-defined permutation scheme, a “green list”

with size of γ × |V| is generated. Third, the processor will sort the

logit vector and check N most possible token from the sort result,

for all the “green list” logit, add δ to the logit vector, and proceed

to the next iteration.

Since the watermarked distribution is generated without

knowledge of the green list bias, z score for watermarking

detection can be defined as:

𝑧 =
2(|𝑆|G−𝑇/2)

√T
 (1)

|S|G is the number of green list tokens. T is the number of tokens.

The text is considered as watermarked if the z score passes a certain

threshold.

To evaluate the hardware costs of the technique, we run the

algorithm on local personal devices, i.e. AMD 3995WX CPU with

128 threads and NVIDIA RTX A6000 with a small LLM model

OPT-125M [7] as used in the original method. Fig. 2 (b) shows the

runtime breakdown. For example, a vocabulary size of 50272 is

used in the experiment. The green list takes a fraction of the

vocabulary list, e.g. 10%~40%, which is a large array for the

watermarking process. It is observable the watermarking operation

exceeds the runtime of the transformer model which is used to

generate the text. The primary computation tasks for the

watermarking process include greedy prediction lookup, sorting

and green list generation, generating significant runtime overhead

to the LLM model. In this work, an acceleration architecture is

proposed and implemented in hardware to reduce the major

execution overhead in end-to-end watermarking applications with

a special of focus on the three major computing tasks, i.e. lookup,

sorting and green list generation.

III. PROPOSED ARCHITECTURE AND ALGORITHM CO-DESIGN

A. Efficeint Hash model for Green List Generation and Lookup

As the original lookup operation takes significant amount of
memory search and value comparison, e.g. O (size of green list), for
each token, to ease the major computational bottleneck shown in
Fig. 2(b), a hardware efficient hash function is proposed in this work
to speed up the green list generation and lookup operation. A hash
function returns the lookup result in one cycle and takes an use-
defined key (16 bit in the proposed scheme) for private green list
generation. The main properties of a hash function include:

1) One-way property: for a mathematical function converting a
variable-length input to a fixed-length result that is
computationally difficult to invert.

2) Weak Partial preimage resistance: for a given hash function h(x)
for input x, it is infeasible to find any partial input that can be
used to construct a full input that hashes to a given hash value.

3) Weak Collision resistance: for a given input and its hash, it is
difficult to find a different input b such that:

ℎ(𝑎) = ℎ(𝑏), 𝑎 ≠ 𝑏 (2)

In this work, we choose to implement an efficient encrypted

hash function based on Toeplitz hash scheme which is more

hardware friendly for implementation. The Toeplitz function is

described as the following:

Let A be a n×n matrix. The Toeplitz matrix is defined as:

𝐴 =

(

𝑎0 𝑎−1 𝑎−2 ⋯ ⋯ 𝑎−(𝑛−1)
𝑎1 𝑎0 𝑎−1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑎−1 𝑎−2
⋮ ⋱ 𝑎1 𝑎0 𝑎−1

𝑎n−1 ⋯ ⋯ 𝑎2 𝑎1 𝑎0)

 (3)

The Toeplitz hash function has the property of 𝐴𝑖,𝑗 = 𝐴𝑖+1,𝑗+1

and for each column in the matrix, the value is obtained from the
consecutive column by shifting down 1 bit and adding one bit at the
top.

Let M be the input key consisting of m bits data. Define hA(M)
as the hash result by multiplying A with transposed M as shown in
Algorithm 2.

To support the hash function presented in Algorithm 2, (m+n-
1) bits from hardware are needed to define the whole Toeplitz
matrix instead of n×m bits, which results in a significant saving in
the hardware resources. Linear Feedback Shift Register (LFSR)
circuit is implemented in this work for the generation of the Toeplitz
matrix because of its low power and low hardware resources
properties [8, 9]. The Toeplitz matrix is formed by providing the
initial state of the LFSR starting from the bottom as the first column
of the matrix and shifting down the previous column by one bit and
adding the new bit from LFSR to the top each clock cycle.

However, by limiting the connections of the LFSRs to

irreducible polynomials, the distribution of the hash function is ε-
balanced for a small ε [x]:

∀𝑀 ≠ 0, 𝑐, 𝑃𝑟ℎ(ℎ(𝑀) = 𝑐) ≤ 𝜀 (4)

𝜀 ≤
𝑚+𝑛

2𝑛−1
 (5)

where M is the Toeplitz matrix, 𝑃𝑟ℎ(ℎ(𝑀)) denotes the probability

of h(M) when ℎ ∈ 𝐻, where H a set of hash functions. For a 16-bit

input with a 32×32 Toeplitz hash matrix, the maximum deviation

𝜀 ≈ 0.000000022, minimizing the probability of any particular

outcome deviating significantly from the average probability of all

outcomes.

B. Pruned Bitonic Sorting Network (PBSN)

The watermarking algorithm, as introduced in Section II,
necessitates sorting the vocabulary based on the logit vector derived
from the Transformer for checking the most possible token
candidates in green list. The sorting operations are the second

largest computing tasks in watermarking process due to the large
size of its target list, i.e. 65536 words in the vocabulary.

Bitonic Sorting

Bitonic Sorting

Bitonic Sorting

Prune Prune
Prune Prune

Prune Prune

Bitonic Sorting
Results

logit Vector

Length n

Length n

Length n/2

Length n/4

Prune

Ascending Bitonic sorting

Descending Bitonic sorting

Ascending Order Vector

Descending Order Vector

Fig. 3. Flow chart for PBSN algorithm.

The indexes corresponding to the largest k logit values can
provide fixed biasing to its logit values if the indexes are shown in
the green list as well. Sorting a large vocabulary logit vector and
retrieving the largest k values demands a highly performant
algorithm. In comparison to widely used sorting algorithms such as
quicksort, merge sort, selection sort, and heapsort, the bitonic
sorting network [10, 11, 12] exhibits superior parallelism suitable
for specialized hardware implementation. Given that our target
platform is an FPGA, which offers hardware support for parallel
processing and storage, we choose bitonic sorting network as the
baseline sorting method. As shown in Fig. 3, the key principle
underlying the bitonic sorting network involves initially sorting a
logit vector in "ascending-descending" order and subsequently
utilizing the bitonic merging function to sort it into "ascending"
order. For the large vocabulary logit vector, the bitonic sorting
network initiates the sorting process by handling small sub-vectors
with a length of 4. It then iteratively extends this sorting procedure
to larger sub-vectors until the entire logit vector is effectively
sorted.

To optimize the efficiency of the watermarking, only k, e.g. 64
most possible tokens are checked against the green list. To sort and
pick indexes of the largest k logit values, we devised a pruned
bitonic sorting network, or PBSN. The proposed PBSN method
aims to reduce processing time and eliminate redundant sorting
efforts for logit values that cannot possibly be among the top k
values in the final results. The details of the PBSN are introduced
in Algorithm 3. Within the bitonic merging function, a length check
is implemented after sorting of the sub-vector, selectively retaining
only the largest k values and disregarding the remaining values in

the sub-vector. Intuitively, if an element does not belong to the
largest k values within a sub-vector, it cannot be among the largest
k values for the entire vocabulary logit vector. In Table 1, a
comparison of average time and space complexity with other well-
known sorting algorithms is presented. The proposed pruned bitonic
sorting algorithm theoretically achieves significant latency
improvement compared with bitonic sorting without pruning, given
that k in the watermarking algorithm is notably smaller than the logit
vector length n, e.g. 65536. The complexity for bitonic sorting
assumes using n/2 comparators whose hardware cost will be
described in the next section.

Table 1. Time and space complexity of pruned bitonic sorting

compared with existing sorting algorithms.

Time Complexity

Space Complexity

Algorithm Bubble Sort Quick Sort Merge Sort Bitonic Pruned Bitonic

O(n)2 O(n logn) O(n logn)

O(1)

O(log n)2

O(logn) O(n)

O(log(n/k + 1)*log k)2

O(nlog n)2 O(nlog k)2

C. Top-level Architecture for LLM-MARK

Fig. 4 shows the top-level architecture of the proposed

watermarking processor design targeting FPGA implementation.

The input data is the logic vector from LLM output, which is stored

in prediction buffer while the vocabulary list is stored in the

watermark buffer. The Pruned Bitonic Sorter sorts the logit vector

from the prediction buffer and the sorting result is sent to Hash

Network for lookup. The LLM-MARK Control updates the lookup

result to the watermarking list to modify the logit vector in the

prediction buffer for the next iteration input to LLM.

Hash Network
Pruned Bitonic Sorter

LLM-MARK Control

KLFSR MLFSR
+++ ...

...

...
Sorting Global Bus

Watermark Buffer

Input Data

+

Watermark List

Prediction Buffer

Fig. 4. Top-level Architecture of proposed watermarking processor.

IV. HARDWARE MAPPING AND EVALUATION RESULT

In this section, the hardware mapping, quantization effects and

evaluation results are shown. The design is implemented on a

Xilinx XCZU15EG UltraScale+ FPGA for evaluation. Fixed

integer numbers are used for watermarking process compared with

floating point in baseline algorithm.

A. Quantization Impact on Watermarking

The logit vector from LLM model represents the probability

values for each possible token which will be processed by the

proposed watermarking processor. Due to the fixed integer

representation in this work, the probability value is quantized

leading to loss of the differentiation among the words in the green

list. Fig. 5 shows the quantization loss and overall watermarking

confidence with different precision and different γ (the percentage

of green list size to the overall vocabulary size) during

watermarking with the text input from the C4 (Colossal Clean

Crawled Corpus) dataset [13].

As shown in Fig. 5(a), the cosine similarity for the green list

generation during the first iteration starts to degrade from 12 bits.

As shown in algorithm 1, the green list are used for logit vector

probability modification, by doing so, the watermarking results are

observed with deviation, as plotted in Fig. 5(b). For all testing

cases, there is no watermarking loss for 16-bit compared with fp32,

and there is a large similarity drop around 10-bit which will cause

the watermarked text diverged drastically from the original

watermarked text. The z score also starts to degrade from 10-12

bits.

Quantization Loss on Green List Generation
with Different Green List Size γ

G
re

e
n

 li
st

 s
im

ila
ri

ty

Bit Precision Bit Precision

Bit Precision Bit Precision

Quantization Loss on Watermarking
Result with Different Green List Size γ

Z
Sc

o
re

Bit Precision Bit Precision

Bit Precision Bit Precision

W
at

e
rm

ar
k

re
su

lt
 s

im
ila

ri
ty

γ = 0.1 γ = 0.25

γ = 0.5 γ = 0.75

γ = 0.1 γ = 0.25

γ = 0.5 γ = 0.75

Z Score threshold

G
re

e
n

 li
st

 s
im

ila
ri

ty

(a)

W
at

e
rm

ar
k

re
su

lt
 s

im
ila

ri
ty

Z
Sc

o
re

(b)
Fig. 5. (a) Quantization loss on green list generation with different

green list size (first iteration). (b) Quantization loss on watermarking

result with different green list size (Vocabulary size = 50272).

B. Toeplitz Hash generation and lookup for Green list

generation

Fig. 6 shows the HW implementation of LFSR based Toeplitz

hash function. The Matrix LFSR (MLFSR) is used to construct

Toeplitz Hash Matrix introduced in algorithm 2. Each consecutive

state in MLFSR represents each column of Toeplitz Hash Matrix

with a feedback polynomial of degree 2n. The Key LFSR (KLFSR)

is used to encode the input key by XOR the key with the current

state and the feedback output of the KLFSR and is fed to Toeplitz

Hash Matrix for the result key stream for hash lookup.

By doing so, the periodicity of the proposed hash model is

(22𝑛 − 1)(2𝑚 − 1) where n is the column length of the Toeplitz

matrix, m is the bit length of the input key.

Input key[0] key[1] key[2] key[3] ... key[m]

...
Key LFSR (KLFSR)

...

...

G
re

e
n

 L
is

t
G

e
n

e
ra

ti
o

n

C
o

n
tr

o
l

To
ep

li
tz

 H
a

sh
 A

cc
u

m
u

la
to

r

V
o

ca
b

u
la

ry
 B

u
ff

e
r

Hash Lookup

..
.

...

Toeplitz Hash Matrix
(m×n)

..
.

...

Matrix Initialization[]

Matrix LFSR (MLFSR)
size = 2n bits

...

..
...
.

Fig. 6. Diagram for LFSR based Toeplitz hash

During green list generation, the throughput and efficiency of

green list generation is defined as:

Tg =
Number of green list token generated

Clock cycle taking to generate green list
 (6)

Eg =
Target greenlist size

Total hash computing time
 (7)

For the most efficient and fast green list generation, we want to

improve Tgwith the highest Eg. Fig. 7(a) shows hash throughput

with different hash matrix size compared with the non-pipelined

baseline scheme. With different column + row bits numbers (26,

28, 30, 32), the average throughput of the hash function increases

by 14.5X. Fig. 8(b) shows the green list generation speed up

compared with the baseline scheme (Fisher-Yates shuffle [14]).

The average speed up is 13.5X with γ = 0.1, 0.25, 0.5, 0.75.

Hash Throughput with Different Hash Matrix size

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

Proposed SchemeBaseline Hash

Col + Row bits

13X

Generation Speed up with Different Green List Size

R
un

 C
yc

le
s

p
er

 It
er

at
io

n

12X 13.5X

14.6X
15.2X

(b)

(a)

14X 15X 16X

Lookup Speed up with Different Green List Size

R
un

 C
yc

le
s

p
er

 It
er

at
io

n

(c)

31X 157X 314X
471X

Proposed SchemeBaseline Hash

Proposed SchemeBaseline Search

Fig. 7. (a) Hash thoughput comparison. (b) Green list generation speed

up comparison. (c) lookup speedup on Xilinx XCZU15EG FPGA.

The proposed scheme is implemented on Xilinx XCZU15EG

FPGA, with pipelined generation and lookup scheme. As shown in

Fig. 7(c), the average speed up for different green list sizes for look

up is 243X, eliminating the major overhead of execution time for

green list generation and look up.

C. Pruned Bitonic Sorter Implementation

As illustrated in Fig. 8, the proposed sorter employing the

pruned bitonic sorting algorithm is constructed using 128 block

RAMs and a 128-element 16b digital comparator array in the

FPGA. Each logit data has a 16b index and a 16b value. A

dedicated 32*256b bus is designed to fetch the logit data from

block RAMs and store the partial sum results. Given the gap

between the substantial size of the vocabulary logit vector and the

limited hardware resources, multiple cycles, as well as the input

data management module and the finite state machine controller,

are required to complete a single iteration of the bitonic sorting

algorithm. The pruning function is integrated into the digital

comparator to selectively retain only the top k values from the

comparator output.

...Block RAMs for logit values and index (256KB)

Bank0 2KB Bank126 2KB Bank127 2KB

32b*256 Bus

32b logit
16b index 16b value

Input Data Management

128 16b Comparator Array

FSM
Control

...Digital
Comparator 0

Digital
Comparator 1

Digital
Comparator 63

...Digital
Comparator 64

Digital
Comparator 65

Digital
Comparator 127

Logits Read
and Store

Fig. 8. Architecture diagram for pruned bitonic sorter.

In the watermarking algorithm, the k is 40 and the length of the

vector (n) is 50272 based on the original algorithm [6]. One

limitation of bitonic sorting is that the n must be the power of 2 and

we address this through padding zeros. The FPGA evaluation

results for pruned bitonic sorter are shown in Fig. 9. The pruned

bitonic sorter achieves 4.9x run cycle reduction compared with

bitonic sorter without pruning and 34.7x speed up over the widely

used quick sorting algorithm.

10E6
FPGA Run Cycle Reduction

1

1000

Quick
Sort

Pruned
Bitonic

Bitonic
Sort

22620

34.7x

4.9x

FPGA Evaluation

Usage

Utilization

LUT FF
Block
RAM

I/O

60467

17.7%

8928 128 67

1.31% 17.2%20.4%

Fig. 9. FPGA evaluation for pruned bitonic sorter.

D. FPGA Prototyping

The design of the proposed watermarking processor is

implemented on a Xilinx XCZU15EG FPGA board. Fig. 10 shows

a board that contains one Zynq UltraScale+ 15EG chip, 2GB of

DDR4 DRAM, and 3.7MB of SRAM. The watermarking design is

implemented on the board with 16-bit precision to pessimistically

prevent text degradation due to quantization loss, with the greenlist

size of 12566, vocabulary size of 50272 and an average of 80 new

tokens. 100 randomly selected results from C4 dataset are shown

in Fig. 10 (b). For watermarking with 16 bits, all the generated texts

are the same as the floating point watermark result. The z scores

for all the watermarked text are above 4.0, and the z score for

unwatermarked text are all below 4, thus the confidence for the

detection is 100%. The overall run cycle using C4 dataset is shown

in Fig. 10(b). Including the LLM execution, each generated token

has an average of 0.052s latency. The proposed scheme has 30X

speed up over watermarking generation and 22.8X speed up over

watermarking detection compared with the baseline

implementation on the FPGA. Fig. 10(d) shows the overall

hardware resources for this design.

(a)

FPGA Specification

SoC

Logic

Cells

DDR4

BRAM

XCZU15EG-2FFVB1156I

747K

PL 2GB DDR4, 32bit

26.2Mb

20

-4

12

4
0

8

16

1.2

0

0.8

0.4
0.2

0.6

1.0

Z-
Sc

o
re

Si
m

il
ar

it
y

1 1005025 75
Number of Examples

16b FP and 16b Int
watermark Similarity

Z-Score w/
Watermark

Z-Score w/o
Watermark

C4 Dataset Results for Watermarking Performance

1 1005025 75
Number of Examples

40

30

10

0

20

La
te

n
cy

 (
m

s)

C4 Dataset Results for Latency
Watermarking Detection

Watermark Threshold

(b)

Baseline This Work

1.2E6

0.8E6

0.4E6

0

R
u

n
 C

yc
le

s

Total Benefit for Watermarking

Green List Generation

Look Up
Sorting

Baseline This Work

3E5

2E5

1E5

0

R
u

n
 C

yc
le

s

Total Benefit for Detection

Green List Generation

Look up
Computing

Others
Others

30.0x
22.8x

(c)

LUTs FFs BRAMResources

(d)

LLM-MARK

I/O

Utilization (%)

Power (W)

9178 133 67

20.417.8

0.4 0.627

61063

1.417.9

0.859 0.941

Fig. 10. (a) FPGA module in this work; (b) Latency and z-score of the

dataset examples; (c) Overall benefits of the proposd design; (d)

Resource usage on the FPGA.

V. CONCLUSION

In this work, we propose a hardware efficient watermarking

computing architecture framework with real-time processing on

local devices for the LLM authentication. By implementing a

toeplitz hash generation algorithm for green list generation and

look up procedure, and a pruned bitonic sorting network to sort

vocabulary logit vector, this architecture framework can achieve

30x latency reduction for text watermarking and 22.8x latency

reduction on watermark detection with the demonstration on

Xilinx XCZU15EG FPGA. The proposed algorithm to architecture

codesign framework offers a practical solution to the Intellectual

Property protection in the era of generative AI.

ACKNOWLEDGEMENT

 This work was supported in part by NSF CCF-2008906.

REFERENCES

[1] N. Sheybani, Z. Ghodsi, R. Kapila, and F. Koushanfar, “ZKROWNN:
Zero Knowledge Right of Ownership for Neural Networks,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC), Jul. 2023, pp. 1–6.
doi: 10.1109/DAC56929.2023.10247798.

[2] S. Gehrmann, H. Strobelt, and A. Rush, “GLTR: Statistical Detection and
Visualization of Generated Text,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: System
Demonstrations, M. R. Costa-jussà and E. Alfonseca, Eds., Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 111–116.
doi: 10.18653/v1/P19-3019.

[3] X. Zhao, P. Ananth, L. Li, and Y.-X. Wang, “Provable Robust
Watermarking for AI-Generated Text.” arXiv, Oct. 13, 2023. doi:
10.48550/arXiv.2306.17439.

[4] “New AI classifier for indicating AI-written text.” Available:
https://openai.com/blog/%20new-ai-classifier-for-indicating-ai-written-
text.

[5] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn,
“DetectGPT: Zero-Shot Machine-Generated Text Detection using
Probability Curvature,” in Proceedings of the 40th International
Conference on Machine Learning, PMLR, Jul. 2023, pp. 24950–24962.
Available: https://proceedings.mlr.press/v202/mitchell23a.html.

[6] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein,
“A Watermark for Large Language Models.” arXiv, Jun. 06, 2023. doi:
10.48550/arXiv.2301.10226.

[7] S. Zhang et al., “OPT: Open Pre-trained Transformer Language Models.”
arXiv, Jun. 21, 2022. doi: 10.48550/arXiv.2205.01068.

[8] E. Erkek and T. Tuncer, “The implementation of ASG and SG Random
Number Generators,” in 2013 International Conference on System
Science and Engineering (ICSSE), Budapest, Hungary: IEEE, Jul. 2013,
pp. 363–367. doi: 10.1109/ICSSE.2013.6614692.

[9] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based Key Generator
for the Niederreiter Cryptosystem Using Binary Goppa Codes,” in
Cryptographic Hardware and Embedded Systems – CHES 2017, vol.
10529, W. Fischer and N. Homma, Eds., in Lecture Notes in Computer
Science, vol. 10529. , Cham: Springer International Publishing, 2017, pp.
253–274. doi: 10.1007/978-3-319-66787-4_13.

[10] A. Salihu, M. Hoti, and A. Hoti, “A Review of Performance and
Complexity on Sorting Algorithms,” in 2022 International Conference on
Computing, Networking, Telecommunications & Engineering Sciences
Applications (CoNTESA), Dec. 2022, pp. 45–50. doi:
10.1109/CoNTESA57046.2022.10011382.

[11] “CPP11sort: A parallel quicksort based on C++ threading - Langr - 2022
- Concurrency and Computation: Practice and Experience - Wiley Online
Library.” Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.6606

[12] M. F. Ionescu and K. E. Schauser, “Optimizing parallel bitonic sort,” in
Proceedings 11th International Parallel Processing Symposium, Genva,
Switzerland: IEEE Comput. Soc. Press, 1997, pp. 303–309. doi:
10.1109/IPPS.1997.580914.

[13] “allenai/c4 · Datasets at Hugging Face.” Available:
https://huggingface.co/datasets/allenai/c4

[14] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM,
vol. 7, no. 7, p. 420, Jul. 1964, doi: 10.1145/364520.364540

https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.6606
https://huggingface.co/datasets/allenai/c4

