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Abstract—As generative AI such as ChatGPT rapidly 

evolves, the increasing incidence of data misconduct such as 

the proliferation of counterfeit news or unauthorized use of 

Large Language Models (LLMs) presents a significant 

challenge for consumers to obtain authentic information. 

While new watermarking schemes are recently being proposed 

to protect the intellectual property (IP) of LLM, the 

computation cost is unfortunately too high for the targeted 

real-time execution on local devices. In this work, a specialized 
hardware-efficient watermarking computing framework is 

proposed enabling model authentication at local devices. By 

employing the proposed hardware hashing for fast lookup and 

pruned bitonic sorting network acceleration, the developed 

architecture framework enables fast and efficient 

watermarking of LLM on the small local devices. The 

proposed architecture is evaluated on Xilinx XCZU15EG 

FPGA, demonstrating 30x computing speed-up, making this 

architecture highly suitable for integration into local mobile 

devices. The proposed algorithm to architecture codesign 

framework offers a practical solution to the immediate 

challenges posed by LLM misuse, providing a feasible 
hardware solution for Intellectual Property protection in the 

era of generative AI. 

I. INTRODUCTION 

The recent advancements in generative AI enable high-quality 

text generations that are difficult to distinguish between human or 

machine origins. While the generative AI offers powerful new 
capabilities for human assistance such as customer support, content 

creation, essay composition, education and tutoring, etc., the recent 

explosive use of such technology calls for an urgent action for 

implementing security measures on the large language models 

(LLM).  Malicious usage of LLM such as plagiarism in academic 

activities, forged generations of news or articles, unauthorized use 

of copyrighted models poses significant threats to the integrity of 

information contents in social media, education channels and daily 

communications.  As one of the recent announcements, major AI 

companies, such as Open AI, Googles, have pledged to provide 

watermark techniques for the AI-generated text contents.       

Despite the significant efforts being poured into the 

authentication of the generated contents of LLM, a viable 
watermarking technique for LLM is still under development. 

Although a deep neural network (DNN) watermarking framework 
was proposed in [1], it cannot be directly used for language models. 

For LLM models, two types of watermarking techniques are 

commonly used.  The first type of techniques uses “Post-hoc 

Detectors” which incorporates heuristics or model-based 

characteristics to detect the differences between natural languages 

from human being and the machine-generated models. This 

method does not alter the outputs of the LLM models for 

detection.  For example,  the GLTR [2,3] detector applies the 
solution based on statistical methods that can detect generation 

artifacts to check whether  the text is generated  by a model. The AI 

classifier [4] is a detector from OpenAI to distinguish AI-generated 

text by detecting false claims  through a trained model. The method 

is not fully reliable due to the limitations on short text and the 
potential misleading human-written text for evading the detection. 

Another model based detector, DetectGPT [5], uses only log 
probabilities computed by the model and random perturbations of 
the passage from another  generic  pre-trained model instead of 

separate training procedure and extra datasets.   As the LLM is 

being rapidly developed to behave indistinguishable to the human 

natural speeches, the post-hoc approaches face difficulty in 

achieving detection accuracy.   A second class of the watermarking 
techniques, as recently being proposed by [6], employs the use of 

LLM to influence the content being generated so that the generated 

text follows certain characteristics that can be detected by the users 
holding the keys which are used in the generation process.  This 
type of watermarking techniques requires sophisticated changes or 

appendages to the generated texts with a balance between 

detectability and quality of the text.    The benefits of this technique 

are as follows: (1) the detection can be performed without 
knowledge of the model parameters, (2) no retraining is needed to 

the LLM, (3) watermarks can be detected by only a portion of the 

text, (4) confidence score is available to quantify the watermarking 
results, (5) watermarks cannot be removed or evaded without 

significant modifications. As a result, this technique represents the 

state-of-the-art watermarking method for the current LLM.   As an 

example shown in Fig. 1 from the watermarking method in [6], by 
embedding the watermarking pattern in the text, the watermarking 
can be detected while remaining indiscernible to humans.    
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Fig. 1. Watermarking of LLM example [6]. 

DAC '24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3656545 

This work is licensed under a Creative Commons Attribution International 4.0 License.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656545&domain=pdf&date_stamp=2024-11-07
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656545&domain=pdf&date_stamp=2024-11-07


While the watermarking method in [6] offers a viable 

direction for authentication of the LLM models, the computation 

cost for generation of watermarks is very high.  As will be shown 

in Section 2, the vocabulary lookup and entropy sorting operations 

cause even more runtime than the LLM model by itself on a high-

end processor. As many applications for authentic use of LLMs 

require local execution of LLM model as protected IPs, running 

watermarking tasks at local devices suffer from the limited 

computing resources offered by mobile processors or low-cost 

dedicated silicon solutions such as small FPGAs.  To overcome 

this challenge, this paper proposes a computing framework LLM-

MARK for watermarking LLM models specially for resource-

constrained local devices. The contributions of this paper include: 

(1). It is the first algorithm and architecture codesign of the LLM 

watermarking for generative AI model authentication and IP 

protection. (2). Special Toeplitz hash function is developed for 

both algorithm and hardware to accelerate the lookup procedure 

and green list generation by 243x for watermarking and detection. 

(3). The pruned bitonic soring network is implemented to reduce 

the latency of large vocabulary logit vector soring by 34.7x. 

(4) End-to-end evaluation on Xilinx XCZU15EG FPGA shows 

total 30x run cycle reduction for watermarking LLM results and 

22.8x run cycle reduction for watermark detection.     

II. BASELINE WATERMARKING ALGORITHM FOR LLMS 

Fig. 2 (a) shows the data flow of the watermarking process [6]. 

The prompt text is sent to LLM for next-token prediction. During 

each iteration, there will be a prediction logit vector from the 

transformer model representing the possibility for the next token. 

The watermark processor generates a random “green list” for each 

token.  The possible following tokens are checked against the 

generated green list. The word in the green list is given higher 

possibility to be used for the next token.   This process manipulates 

the probability distribution of the logic vector and sampling the 

next token based on the watermarked distribution. As a result, the 

generated text will be biased toward the green list. The watermark 

detection is based on the statistical probability of the green list 

appearance in the result. To control the text quality, bias is chosen 

so that only tokens with lower impact to text quality will be 

replaced by a green list tokens. 
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Fig. 2. (a) Processing flow of watermarking method. (b) Runtime 

breakdown of the watermarking operation in a microprocessor. 

Algorithm 1 shows more details of the algorithm.  Firstly, by 

providing a sequence of prompt text to the LLM, an output logit 

vector for the whole vocabulary list |V| is generated for each word. 

Next, by using user-defined permutation scheme, a “green list” 

with size of γ × |V| is generated. Third, the processor will sort the 

logit vector and check N most possible token from the sort result, 

for all the “green list” logit, add δ to the logit vector, and proceed 

to the next iteration.  

Since the watermarked distribution is generated without 

knowledge of the green list bias, z score for watermarking 

detection can be defined as: 

𝑧 =
2(|𝑆|G−𝑇/2)

√T
                                (1) 

|S|G is the number of green list tokens. T is the number of tokens. 

The text is considered as watermarked if the z score passes a certain 

threshold. 

To evaluate the hardware costs of the technique, we run the 

algorithm on local personal devices, i.e. AMD 3995WX CPU with 

128 threads and NVIDIA RTX A6000 with a small LLM model 

OPT-125M [7] as used in the original method. Fig. 2 (b) shows the 

runtime breakdown. For example, a vocabulary size of 50272 is 

used in the experiment. The green list takes a fraction of the 

vocabulary list, e.g. 10%~40%, which is a large array for the 

watermarking process. It is observable the watermarking operation 

exceeds the runtime of the transformer model which is used to 

generate the text. The primary computation tasks for the 

watermarking process include greedy prediction lookup, sorting 

and green list generation, generating significant runtime overhead 

to the LLM model. In this work, an acceleration architecture is 

proposed and implemented in hardware to reduce the major 

execution overhead in end-to-end watermarking applications with 

a special of focus on the three major computing tasks, i.e. lookup, 

sorting and green list generation. 

 

III. PROPOSED ARCHITECTURE AND ALGORITHM CO-DESIGN 

A. Efficeint Hash model for Green List Generation and Lookup 

As the original lookup operation takes significant amount of 
memory search and value comparison, e.g. O (size of green list), for 
each token, to ease the major computational bottleneck shown in 
Fig. 2(b), a hardware efficient hash function is proposed in this work 
to speed up the green list generation and lookup operation. A hash 
function returns the lookup result in one cycle and takes an use-
defined key (16 bit in the proposed scheme) for private green list 
generation. The main properties of a hash function include:  

1) One-way property: for a mathematical function converting a 
variable-length input to a fixed-length result that is 
computationally difficult to invert. 

2) Weak Partial preimage resistance: for a given hash function h(x) 
for input x, it is infeasible to find any partial input that can be 
used to construct a full input that hashes to a given hash value. 

3) Weak Collision resistance: for a given input and its hash, it is 
difficult to find a different input b such that: 

ℎ(𝑎) = ℎ(𝑏), 𝑎 ≠ 𝑏                             (2) 



In this work, we choose to implement an efficient encrypted 

hash function based on Toeplitz hash scheme which is more 

hardware friendly for implementation. The Toeplitz function is 

described as the following: 

Let A be a n×n matrix. The Toeplitz matrix is defined as: 

𝐴 =

(

 
 

𝑎0 𝑎−1 𝑎−2 ⋯ ⋯ 𝑎−(𝑛−1)
𝑎1 𝑎0 𝑎−1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑎−1 𝑎−2
⋮  ⋱ 𝑎1 𝑎0 𝑎−1

𝑎n−1 ⋯ ⋯ 𝑎2 𝑎1 𝑎0 )

 
 
             (3) 

The Toeplitz hash function has the property of 𝐴𝑖,𝑗 = 𝐴𝑖+1,𝑗+1 

and for each column in the matrix, the value is obtained from the 
consecutive column by shifting down 1 bit and adding one bit at the 
top.  

Let M be the input key consisting of m bits data. Define hA(M) 
as the hash result by multiplying A with transposed M as shown in 
Algorithm 2. 

To support the hash function presented in Algorithm 2, (m+n-
1) bits from hardware are needed to define the whole Toeplitz 
matrix instead of n×m bits, which results in a significant saving in 
the hardware resources. Linear Feedback Shift Register (LFSR) 
circuit is implemented in this work for the generation of the Toeplitz 
matrix because of its low power and low hardware resources 
properties [8, 9]. The Toeplitz matrix is formed by providing the 
initial state of the LFSR starting from the bottom as the first column 
of the matrix and shifting down the previous column by one bit and 
adding the new bit from LFSR to the top each clock cycle.  

 
However, by limiting the connections of the LFSRs to 

irreducible polynomials, the distribution of the hash function is ε-
balanced for a small ε [x]: 

∀𝑀 ≠ 0, 𝑐, 𝑃𝑟ℎ(ℎ(𝑀) = 𝑐) ≤ 𝜀                    (4) 

𝜀 ≤
𝑚+𝑛

2𝑛−1
                                   (5) 

where M is the Toeplitz matrix,  𝑃𝑟ℎ(ℎ(𝑀)) denotes the probability 

of h(M) when ℎ ∈ 𝐻, where H a set of hash functions. For a 16-bit 

input with a 32×32 Toeplitz hash matrix, the maximum deviation 

𝜀 ≈  0.000000022, minimizing the probability of any particular 

outcome deviating significantly from the average probability of all 

outcomes. 

B. Pruned Bitonic Sorting Network (PBSN) 

The watermarking algorithm, as introduced in Section II, 
necessitates sorting the vocabulary based on the logit vector derived 
from the Transformer for checking the most possible token 
candidates in green list. The sorting operations are the second 

largest computing tasks in watermarking process due to the large 
size of its target list, i.e. 65536 words in the vocabulary.  
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Fig. 3. Flow chart for PBSN algorithm. 

The indexes corresponding to the largest k logit values can 
provide fixed biasing to its logit values if the indexes are shown in 
the green list as well. Sorting a large vocabulary logit vector and 
retrieving the largest k values demands a highly performant 
algorithm. In comparison to widely used sorting algorithms such as 
quicksort, merge sort, selection sort, and heapsort, the bitonic 
sorting network [10, 11, 12] exhibits superior parallelism suitable 
for specialized hardware implementation. Given that our target 
platform is an FPGA, which offers hardware support for parallel 
processing and storage, we choose bitonic sorting network as the 
baseline sorting method. As shown in Fig. 3, the key principle 
underlying the bitonic sorting network involves initially sorting a 
logit vector in "ascending-descending" order and subsequently 
utilizing the bitonic merging function to sort it into "ascending" 
order. For the large vocabulary logit vector, the bitonic sorting 
network initiates the sorting process by handling small sub-vectors 
with a length of 4. It then iteratively extends this sorting procedure 
to larger sub-vectors until the entire logit vector is effectively 
sorted.  

 

To optimize the efficiency of the watermarking, only k, e.g. 64 
most possible tokens are checked against the green list. To sort and 
pick indexes of the largest k logit values, we devised a pruned 
bitonic sorting network, or PBSN. The proposed PBSN method 
aims to reduce processing time and eliminate redundant sorting 
efforts for logit values that cannot possibly be among the top k 
values in the final results. The details of the PBSN are introduced 
in Algorithm 3. Within the bitonic merging function, a length check 
is implemented after sorting of the sub-vector, selectively retaining 
only the largest k values and disregarding the remaining values in 



the sub-vector. Intuitively, if an element does not belong to the 
largest k values within a sub-vector, it cannot be among the largest 
k values for the entire vocabulary logit vector. In Table 1, a 
comparison of average time and space complexity with other well-
known sorting algorithms is presented. The proposed pruned bitonic 
sorting algorithm theoretically achieves significant latency 
improvement compared with bitonic sorting without pruning, given 
that k in the watermarking algorithm is notably smaller than the logit 
vector length n, e.g. 65536. The complexity for bitonic sorting 
assumes using n/2 comparators whose hardware cost will be 
described in the next section. 

Table 1. Time and space complexity of pruned bitonic sorting 

compared with existing sorting algorithms. 

Time Complexity

Space Complexity

Algorithm Bubble Sort Quick Sort Merge Sort Bitonic Pruned Bitonic

O(n  )2 O(n logn) O(n logn)

O(1)

O(log  n)2

O(logn) O(n)

O(log(n/k + 1)*log  k)2

O(nlog  n)2 O(nlog  k)2
 

C. Top-level Architecture for LLM-MARK 

Fig. 4 shows the top-level architecture of the proposed 

watermarking processor design targeting FPGA implementation. 

The input data is the logic vector from LLM output, which is stored 

in prediction buffer while the vocabulary list is stored in the 

watermark buffer. The Pruned Bitonic Sorter sorts the logit vector 

from the prediction buffer and the sorting result is sent to Hash 

Network for lookup.  The LLM-MARK Control updates the lookup 

result to the watermarking list to modify the logit vector in the 

prediction buffer for the next iteration input to LLM. 

Hash Network
Pruned Bitonic Sorter

LLM-MARK Control

KLFSR MLFSR
+++ ...

...

...
Sorting Global Bus

Watermark Buffer 

Input Data

+

Watermark List

Prediction Buffer 

 
Fig. 4. Top-level Architecture of proposed watermarking processor. 

IV. HARDWARE MAPPING AND EVALUATION RESULT 

In this section, the hardware mapping, quantization effects and 

evaluation results are shown. The design is implemented on a 

Xilinx XCZU15EG UltraScale+ FPGA for evaluation. Fixed 

integer numbers are used for watermarking process compared with 

floating point in baseline algorithm.  

A. Quantization Impact on Watermarking 

The logit vector from LLM model represents the probability 

values for each possible token which will be processed by the 

proposed watermarking processor.  Due to the fixed integer 

representation in this work, the probability value is quantized 

leading to loss of the differentiation among the words in the green 

list. Fig. 5 shows the quantization loss and overall watermarking 

confidence with different precision and different γ (the percentage 

of green list size to the overall vocabulary size) during 

watermarking with the text input from the C4 (Colossal Clean 

Crawled Corpus) dataset [13]. 

As shown in Fig. 5(a), the cosine similarity for the green list 

generation during the first iteration starts to degrade from 12 bits. 

As shown in algorithm 1, the green list are used for logit vector 

probability modification, by doing so, the watermarking results are 

observed with deviation, as plotted in Fig. 5(b). For all testing 

cases, there is no watermarking loss for 16-bit compared with fp32, 

and there is a large similarity drop around 10-bit which will cause 

the watermarked text diverged drastically from the original 

watermarked text. The z score also starts to degrade from 10-12 

bits.   
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Fig. 5. (a) Quantization loss on green list generation with different 

green list size (first iteration). (b) Quantization loss on watermarking 

result with different green list size (Vocabulary size = 50272). 

B. Toeplitz Hash generation and lookup for Green list 

generation 

Fig. 6 shows the HW implementation of LFSR based Toeplitz 

hash function. The Matrix LFSR (MLFSR) is used to construct 

Toeplitz Hash Matrix introduced in algorithm 2. Each consecutive 

state in MLFSR represents each column of Toeplitz Hash Matrix 

with a feedback polynomial of degree 2n. The Key LFSR (KLFSR) 

is used to encode the input key by XOR the key with the current 

state and the feedback output of the KLFSR and is fed to Toeplitz 

Hash Matrix for the result key stream for hash lookup. 

By doing so, the periodicity of the proposed hash model is 

(22𝑛 − 1)(2𝑚 − 1) where n is the column length of the Toeplitz 

matrix, m is the bit length of the input key.  
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Fig. 6. Diagram for LFSR based Toeplitz hash  

During green list generation, the throughput and efficiency of 

green list generation is defined as: 

Tg =
Number of green list token generated 

Clock cycle taking to generate green list
                  (6) 

Eg =
Target greenlist size

Total hash computing time
                      (7) 

For the most efficient and fast green list generation, we want to 

improve Tgwith the highest Eg. Fig. 7(a) shows hash throughput 

with different hash matrix size compared with the non-pipelined 

baseline scheme. With different column + row bits numbers (26, 

28, 30, 32), the average throughput of the hash function increases 

by 14.5X.  Fig. 8(b) shows the green list generation speed up 

compared with the baseline scheme (Fisher-Yates shuffle [14]). 

The average speed up is 13.5X with γ = 0.1, 0.25, 0.5, 0.75. 
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Fig. 7. (a) Hash thoughput comparison. (b) Green list generation speed 

up comparison. (c) lookup speedup on Xilinx XCZU15EG FPGA.  

The proposed scheme is implemented on Xilinx XCZU15EG 

FPGA, with pipelined generation and lookup scheme. As shown in 

Fig. 7(c), the average speed up for different green list sizes for look 

up is 243X, eliminating the major overhead of execution time for 

green list generation and look up. 

C. Pruned Bitonic Sorter Implementation 

As illustrated in Fig. 8, the proposed sorter employing the 

pruned bitonic sorting algorithm is constructed using 128 block 

RAMs and a 128-element 16b digital comparator array in the 

FPGA. Each logit data has a 16b index and a 16b value. A 

dedicated 32*256b bus is designed to fetch the logit data from 

block RAMs and store the partial sum results. Given the gap 

between the substantial size of the vocabulary logit vector and the 

limited hardware resources, multiple cycles, as well as the input 

data management module and the finite state machine controller, 

are required to complete a single iteration of the bitonic sorting 

algorithm. The pruning function is integrated into the digital 

comparator to selectively retain only the top k values from the 

comparator output. 
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Fig. 8. Architecture diagram for pruned bitonic sorter. 

In the watermarking algorithm, the k is 40 and the length of the 

vector (n) is 50272 based on the original algorithm [6]. One 

limitation of bitonic sorting is that the n must be the power of 2 and 

we address this through padding zeros. The FPGA evaluation 

results for pruned bitonic sorter are shown in Fig. 9. The pruned 

bitonic sorter achieves 4.9x run cycle reduction compared with 

bitonic sorter without pruning and 34.7x speed up over the widely 

used quick sorting algorithm. 
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Fig. 9. FPGA evaluation for pruned bitonic sorter. 

D. FPGA Prototyping 

The design of the proposed watermarking processor is 

implemented on a Xilinx XCZU15EG FPGA board. Fig. 10 shows 

a board that contains one Zynq UltraScale+ 15EG chip, 2GB of 

DDR4 DRAM, and 3.7MB of SRAM. The watermarking design is 

implemented on the board with 16-bit precision to pessimistically 

prevent text degradation due to quantization loss, with the greenlist 

size of 12566, vocabulary size of 50272 and an average of 80 new 

tokens. 100 randomly selected results from C4 dataset are shown 

in Fig. 10 (b). For watermarking with 16 bits, all the generated texts 

are the same as the floating point watermark result. The z scores 

for all the watermarked text are above 4.0, and the z score for 

unwatermarked text are all below 4, thus the confidence for the 

detection is 100%. The overall run cycle using C4 dataset is shown 



in Fig. 10(b). Including the LLM execution, each generated token 

has an average of 0.052s latency. The proposed scheme has 30X 

speed up over watermarking generation and 22.8X speed up over 

watermarking detection compared with the baseline 

implementation on the FPGA. Fig. 10(d) shows the overall 

hardware resources for this design.  
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Fig. 10. (a) FPGA module in this work; (b) Latency and z-score of the 

dataset examples; (c) Overall benefits of the proposd design; (d) 

Resource usage on the FPGA.  

V. CONCLUSION 

In this work, we propose a hardware efficient watermarking 

computing architecture framework with real-time processing on 

local devices for the LLM authentication. By implementing a 

toeplitz hash generation algorithm for green list generation and 

look up procedure, and a pruned bitonic sorting network to sort 

vocabulary logit vector, this architecture framework can achieve 

30x latency reduction for text watermarking and 22.8x latency 

reduction on watermark detection with the demonstration on 

Xilinx XCZU15EG FPGA. The proposed algorithm to architecture 

codesign framework offers a practical solution to the Intellectual 

Property protection in the era of generative AI. 
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