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Virtual Reality (VR) and Mixed Reality (MR) systems, e.g., Meta Quest and Apple Vision 
Pro, have recently gained significant interest in consumer electronics, creating a new 
wave of developments in metaverse for gaming, social networking, workforce assistance, 
online shopping, etc. Strong technological innovations in AI computing and multi-
modular human activity tracking and control have produced immersive virtual realistic 
user experiences. However, most existing VR headsets only rely on traditional joysticks 
or camera-based user gestures for input control and human tracking, missing an 
important source of information, namely, brain activity. Hence there is a growing interest 
in incorporating brain-machine interfaces (BMIs) into VR/MR systems for consumer and 
clinical applications [1]. As illustrated in Fig. 33.2.1, an existing VR/MR system integrated 
with EEG channels typically consists of a VR headset, a 16/32-channel EEG cap, a neural 
recording analog frontend, and a PC for signal classification. Major drawbacks of such 
systems include: (1) cumbersome wear and poor user appearance, (2) lack of in situ 
computing support for low-latency operation, (3) inability for real-time mind imagery 
control and feedback based on brain activity, (4) high power consumption due to AI 
classification. To overcome these challenges, this work introduces a mind imagery device 
integrated into existing VR headsets without extra wearing burden for mind-controlled 
BMI for a VR/MR system. The contributions of this work include: (1) an SoC supporting 
in situ mind imagery control for VR/MR systems, (2) seamless integration with existing 
VR headset and optimized selection of EEG channels to enhance user acceptance and 
experience, (3) a general-purpose instruction set architecture (ISA) with flexible dataflow, 
supporting a broad range of mind imagery operations, (4) a confusion-matrix-guided 
teacher-student CNN scheme to save power during AI operations, (5) sparsity 
enhancement on EEG signals to reduce energy. A 65nm SoC test chip is fabricated with 
in situ demonstrations on various mind imagery-based VR controls. While prior works 
address EEG-based seizure detection or similar biomedical applications [2-6], this work 
focuses on emerging BMI in a VR/MR environment. The digital core of the SoC achieves 
an energy consumption <1μJ/class for compute-intensive CNN operations thanks to the 
low-power features and system-level optimizations of the design.  
 
Figure 33.2.2 shows EEG channel selection and integration into the Meta Quest 2 VR 
headset with a tradeoff between accuracy and user convenience. To support a variety of 
mind imagery tasks, 8 EEG channels T3, T5, O1, O2, T6, T4, PZ, and CZ are selected and 
subtly incorporated into the head-strap to maintain user aesthetics. Different mind tasks 
activate a subset of the eight selected channels, e.g. T3/T5/CZ/T4/T6 for mental imagery,  
T5/CZ for affect (e.g., emotion) monitoring, or O1/O2/PZ for steady-state visual evoked 
potential (SSVEP). The reduction of channels leads to a minor drop in the average 
accuracy for the three main tasks (from 90.4% to 85.2%) but significantly improves the 
user experience and usability. Commercial Hydro-link electrodes with saline solution are 
used to capture EEG signals via pre-cut holes in the headband. Figure 33.2.2 also shows 
the top-level diagram of the fully integrated SoC. Up to 16 programmable channels of 
AFE are used for signal acquisition and digitalization. Each channel of the AFE includes 
a two-stage chopper amplifier with 45-to-72dB gain and 0.05-to-400Hz bandwidth, a 
low-pass filter with a corner frequency at 60Hz, and an 8b SAR ADC operating from 
128Hz to 10kHz. The digital core for integrated AI operations comprises an 8×10 
Processing Element (PE) array, control logic, and associated memory banks. An 
instruction memory with a specially developed ISA provides global control to the chip’s 
operation for supporting a range of mind imagery tasks. The real-time classified brain 
states and mind-control commands are transmitted to the VR headset via an external 
Bluetooth module for control of the VR scenes. 
 
While most existing works only focus on a fixed dataflow [4] and CNN model [2,3], a 
highly flexible computing architecture is required to support a variety of mind imagery 
tasks. Figure 33.2.3 shows the specially developed general-purpose ISA for dataflow 
control, model configuration, channel selection, etc. An ultra-wide ISA command of 128b 
is used to supervise various computing tasks, e.g., IIR filter, Convolutional (Conv) layer, 
discrete Fourier transform (DFT), and fully connected (FC) layer with high hardware 
efficiency. To support ever-changing AI models, the configuration of each sub-task, such 
as the number of kernels, number of layers, branch target address (BTA), sparsity 
settings, etc., are also integrated into the ISA for efficient scheduling and execution of 
different tasks. Figure 33.2.3 also shows the detailed architecture of the digital neural 
processor. The 8×10 PE array can be flexibly turned on or gated off by rows or columns. 
CNN, FC, DFT, and IIR filtering operations can be specially performed by reusing the 
same PE array through different dataflows, e.g., weight-stationary for Conv layers, or 
output-stationary for FC layers and DFT. Instead of the conventional systolic array, which 
engages significant pipelined flip-flops, this design purposely removes most of the 

pipeline stages for power saving while still meeting the classification latency target of 5 
to 10ms. Low-power features, e.g., sparsity enhancement, fine clock gating, and a 
teacher-student CNN scheme are also developed as described next.  
 
Given the slow pacing of mental states, a teacher-student CNN scheme is developed to 
strike a balance between sensitivity, computational power, and accuracy, as depicted in 
Fig. 33.2.4. Offline-trained teacher-student models are downloaded into the chip for brain 
activity monitoring. The small-size student model is about 3× faster, with 14% lower 
accuracy but 70% less energy consumption than the teacher model. Pre-determined 
user-specific confusion matrices are stored on the chip to judiciously decide which model 
to be activated for classifications. As shown in Fig. 33.2.4, for the example of affect 
monitoring, while the initial classification is performed by the teacher CNN model for 
high accuracy, as user’s mental state lasts, the small student CNN model is turned on 
for power saving. When a state transition is detected, the confusion matrix is checked to 
evaluate the possibility of true transition or false alarm. A rejection is issued if the 
confusion matrix shows a high possibility of false detection. The rejection is followed by 
the engagement of the teacher CNN for confirmation. Essentially, the confusion matrix 
is used to reduce the false classification rate from the student CNN leading to enhanced 
overall accuracy for the student model. Experiments show that 55% energy/class saving 
can be achieved through the teacher-student CNN scheme with an accuracy drop of only 
2.3% in the affect detection case. Figure 33.2.4 also shows the proposed sparsity 
enhancement technique where small noisy signals are zeroed using comparators with a 
preset threshold. Direct sparse enhancement leads to a significant accuracy drop of over 
15%. A special sparsity-aware training process that adds sparsity operation into the 
training process reduces the accuracy impacts. With the special training flow, a total 
CNN power saving of 12% is achieved with an accuracy impact of up to 4.6%. 
 
The SoC is fabricated in 65nm CMOS with a total area of 7.5mm² and supports four mind 
imagery and affect monitoring/control tasks, including: (1) mental imagery-based VR 
interface control, i.e., users control the GUI operation through the imagination of pictures, 
(2) real-time affect state tracking and feedback control during VR gaming, (3) motor 
imagery, i.e., user’s imagination of hand or leg motions, (4) SSVEP, i.e., user focuses 
on pictures flashing with various frequency as input to the system. Figure 33.2.5 shows 
demonstrations of mental imagery and affect based VR control. In the mental imagery 
control task, the user issues pre-trained “focus” action to pop up a selection menu and 
imagines photos of rainy days or surfing to make a selection of the menu items. In situ 
measurement on mental imagery and control shows the mind commands are 
successfully injected into the VR scenes with an accuracy of 79 to 83%. In affect tracking 
and control, a customized Endless Running game is built  and the gaming difficulty is 
dynamically adjusted based on the CNN-classified user arousal level to enhance user 
engagement, e.g., increasing moving speed when a user’s arousal level is low. 
Measurement results show an accuracy above 90% in tracking a gamer’s affect states 
with successful affect-based pace adjustment.  
 
Figure 33.2.6 shows more measurement results. Public SSVEP [8] and motor imagery 
[9] datasets are evaluated by the on-chip CNN, achieving 86% and 80% accuracy, with 
2% drop from a baseline model in the SSVEP dataset [8]. The teacher-student CNN 
scheme achieves 1.97μJ/class for teacher CNN, 0.6μJ/class for student CNN and 
0.89μJ/class for combined operation. Figure 33.2.6 makes a comparison with prior works 
on biomedical SoCs with integrated digital cores. Thanks to the low-power features, the 
digital core in this work achieves the state-of-the-art energy consumption at sub-
1μJ/class for CNN operation. While prior works mainly focus on medical diagonosis, 
e.g., seizure detection, this work extends brain-machine-interface technology to 
consumer electronics for flourishing VR/MR systems. The chip micrograph is shown in 
Fig. 33.2.7. 
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Figure 33.2.1: Challenges of existing mind-imagery systems for VR/MR 
applications(top). Proposed system solution and contribution of this work (bottom).

Figure 33.2.2: EEG channel selection for VR/MR mind imagery and control and 
proposed fully integrated SoC block diagram.

Figure 33.2.3: ISA for general-purpose mind imagery and control with an example 
flow of affect detection, and neural processor architecture and configurations.

Figure 33.2.4: Confusion-matrix-guided teacher-student CNN scheme, and sparsity-
enhancement technique.

Figure 33.2.5: System demonstrations with customized real-time affect tracking 
based VR game control and mental imagery controlled in-game menu selection. Figure 33.2.6: Measurement results and comparison table.
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Figure 33.2.7: Die photo.
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