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Abstract - This work presents a footstep planning SoC chip for 
humanoid robot. A time-domain graph search engine for 3D 
footstep planning and mixed-signal zero moment point (ZMP) 
gait scheduler with neural inverse kinematics is developed for 
efficient robot motion control. A 65nm SoC chip is fabricated 
and demonstrated in-situ on a humanoid robot with the state-
of-the-art search rate and energy efficiency for humanoid robot 
control and footstep planning.  

Introduction 
Humanoid robots are recently drawing significant interest. 

Compared to wheeled mobile robots, humanoid robots with 
human-like joint systems enable high degree-of-freedom 
(DOF) locomotion for complex tasks e.g. search and rescue, 
housework, or medical treatment, etc. However, there are 
significant challenges in motion control of such robots. First, it 
is complicated and computationally heavy for 3D footstep 
planning on humanoid robot [1] with added dimensions of 
height and special movements, e.g. stepping over or stepping 
onto objects. Second, the complex 10~20 DOFs kinematic 
model for robot joint control leads to high computation 
workload. Third, to maintain balance, special trajectory control 
of the robot’s center of mass (CoM) through zero moment point 
(ZMP) needs to be judiciously performed for fall prevention. 
Prior works have investigated 2D path planning such as a 
wavefront expansion of A* algorithm for graph search [3] and 
an oscillator based NeuroSLAM accelerator for mobile 
wheeled robot [4]. An efficient mixed-signal accelerator was 
developed for real-time swarm intelligence [5]. A motion-
control ASIC for robots was also designed mainly focusing on 
industry robot arms [6]. Despite the above works, there has 
been a lack of a SoC solution for humanoid robots, as presented 
in this work. As highlighted in Fig. 1, the contributions of this 
work include: (1) A time-domain graph search engine for 3D 
footstep planning featuring 3D search, D* replanning for on-
the-fly adjustment, blocking of redundant paths and efficient 
readout of search results; (2) An efficient mixed-signal zero 
moment point (ZMP) gait scheduler for robot balancing; (3) A 
time-domain neural network based inverse kinematic module 
for robot joint control; (4) in-situ demonstrations on a real 
assembled robot with the 65nm SoC rendering 2.7X overall 
energy saving for graph search and 18.4X higher energy 
efficiency for motion control compared with prior works.  

Humanoid Robot SoC Design and Implementation 
Fig. 2 shows the chip top-level architecture which contains 

(1) a 40x40 time-domain graph search engine with special 
mixed-signal circuits for high-level 3D footstep planning, (2) a 
ZMP gait trajectory generator for control of center of mass 
(CoM) for robot balancing, (3) a hybrid time-digital domain 
neural network as inverse kinematic estimator for joint control, 
(4) a motor control module with UART to manage external 
motors via CAN bus.  After the high-level footstep planning is 
completed, ZMP gait scheduler module is enabled for 
generating the trajectory of CoM for joint control. Following 
ZMP operation, the top control will switch to low-level control, 
where the neuro-kinematic module is activated to convert 
cartesian space of end-effectors to the 10-DoF joint space for 

each motor on the robot.  Final motion control commands are 
transmitted through the motor control module using the CAN 
bus and UART protocol. For demonstration, a mini-FPGA is 
used for scan chain and memory loading into the SoC.  

Fig. 3 elaborates details of the 3D footstep planning and the 
time-domain graph search engine. While 2D occupancy grid 
maps typically meet the needs of wheeled robots [4], humanoid 
robots necessitate additional terrain height information to 
account for special movements of stepping over/onto objects in 
3D space.  Different from the widely used A* algorithm, a 
more sophisticated D* replanning algorithm [7] was adopted in 
this work, enabling the robot to adjust its path while heading to 
the destination. In the circuit implementation shown in Fig. 4, 
a 40x40 vertex array is deployed to generate locomotion 
trajectory. The mapping information, e.g. distance of single 
step, height of stairs are mapped into a programmable 2-bit 
delay cell at interconnect of the vertexes. Inside each vertex, 
time-domain signals are passed from eight directions, 
including four planar directions similar as prior work [3] and 
another four directions for the new dimension of height for 
stepping-over or stepping-on movements. Each “vertex lock” 
circuit includes multiple NAND, NOR gates and a DFF for 
catching the earliest time-domain signal and producing a ‘Lock’ 
signal for later tasks. A set of “direction lock” (DL) modules 
are used to record the direction of the first-come time-domain 
signal. The time-domain signals propagate as a wavefront 
through the whole map resulting in the shortest path being 
locked in the DL circuits. Besides static planning, this work 
also supports D* on-the-fly replanning when the environment 
is changed, e.g. an object moved by the robot. As shown in Fig. 
4, with a map update, another round of graph search starting at 
the changed node will be processed without reperforming map 
search on unrelated predecessors leading to 1.8X savings over 
the conventional A* algorithm. For implementation of D* 
algorithm, time-domain NOR and NAND gates are used to 
forward trace the successors of changed nodes. An unlock 
global signal is issued for replanning to unlock all the 
successors, followed by relaunching of the remaining search. 
To further improve the hardware efficiency, a blocking of pre-
determined redundant path on the map is used to only process 
the relevant portion of the map rendering an average energy 
saving of 32.9% in 50 random generated map search tasks. 
Finally, rather than a full memory scan outputting all direction 
values as in [3], this design enables only tracing back along the 
shortest path by utilizing the direction information. This leads 
to 29.1X speedups compared with a full memory scan method. 
Overall, a 2.7X energy saving on pathplanning is achieved over 
prior work [3] thanks to the low power techniques in this work. 

Fig. 5 shows details of ZMP based CoM control for gait 
scheduler and neuro-kinematic circuits for robot joint control. 
ZMP refers to the point where robot’s total moment at the 
ground is zero. Only if the ZMP is kept inside a supporting 
region, the robot can maintain stable dynamically. ZMP is used 
to create the target trajectory of CoM of the robot. A mixed-
signal circuit with a VCO and MUXs is used for synthesizing 
the targeted sinusoidal-like CoM trajectory with 3.4X power 



saving compared with equivalent digital counterpart. The 
resulting sinusoidal trajectory (X, Y, Z) is sent out in the format 
of time pulses for inverse kinematics (IK) calculation. Due to 
the highly complex trigonometric computation in IK, a neural 
network is used to approximate the calculation. As ZMP 
produces the time-domain pulses, a hybrid neuro-kinematic 
circuit is implemented consisting of 8-bit (4-bit MSB and 4-bit 
LSB) time-domain MACs (TDMAC) [8] for the first layer of 
NN and digital MACs for the later layers of NN.  The use of 
mixed-signal neuro-kinematic circuit achieves 12.1X area 
saving and 1.8X latency reduction on motion control compared 
with a digital design.  A 2% loss of accuracy is observed using 
neuro-kinematics and an additional 1% accuracy is lost from 
the time-domain implementation.  

Measurement Results 
A 65nm test chip is fabricated. Fig. 6 shows the 

demonstration of a real assembled humanoid robot with 
measured results.   Fig. 7 shows the die photo and a comparison 
table.  Due to lack of direct prior works on SoC for humanoid 
robot, comparisons are made on mobile robots and pathfinding 
works. The energy efficiency for the motion control in this 
work is 645Hz/mW, which is 18.4X higher than prior work [6], 
thanks to the mixed-signal circuit implementations. Compared 
with prior 2D pathfinding [3], this work demonstrated a more 
complex 3D footstep planning with a 1.6X higher search rate 
and an overall 2.7X improvement on energy per task due to 
forementioned additional low power features.  

 
Fig. 1 Humanoid robot control diagram, challenges, and contributions. 

 
Fig. 2. Chip top-level architecture and processing sequences of this work. 

 
Fig. 3 3D footstep planning, D* algorithms and assembled robot. 

 
Fig. 4 Circuit design of time-based graph search engine for 3D footstep 
planning, replanning, blocking of redundant paths and scan-out.  

 
Fig. 5 Detailed description and implementation of ZMP gait scheduler 
and neuro-kinematics for inverse kinematics in low-level motion control.   

 
Fig. 6 Measurement results and robot demonstration.  

 
Fig. 7 Die photo and Comparison table with prior works. 
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