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Abstract— This work presents a footstep planning chip for
humanoid robot. It integrates a time-domain graph search
engine for high-level 3-D footstep planning and a mixed-signal
zero moment point (ZMP) gait scheduler with neural inverse
kinematics, enabling efficient low-level motion control. The key
contributions of this work include a time-domain graph search
engine for 3-D footstep planning, featuring 3-D search capabil-
ities, D∗ replanning for real-time adjustments, redundant path
blocking, and efficient result readout. In addition, it introduces an
energy-efficient mixed-signal ZMP gait scheduler for maintaining
robot balance, along with a time-domain neural-network-based
inverse kinematics module for controlling robot joints. This work
is demonstrated in situ on a fully assembled robot using the
65-nm system-on-chip (SoC), achieving 2.7× energy savings for
graph search and an 18.4× improvement in energy efficiency for
motion control compared with prior works.

Index Terms— 3-D footstep planning, humanoid robot, inverse
kinematics, mixed-signal, system-on-chip (SoC), zero moment
point (ZMP).

I. INTRODUCTION

AS AUTONOMOUS robotic systems have observed rapid
growth in recent years, and humanoid robots are recently

drawing significant interest. Compared with wheeled mobile
robots, humanoid robots with human-like joint systems enable
high degree-of-freedom (DOF) locomotion for complex tasks,
e.g., search and rescue, housework, or medical treatment.
However, there are significant challenges in motion control
of such robots. First, it is complicated and computationally
heavy for 3-D footstep planning on humanoid robot [1], [2]
with added dimensions of height and special movements, e.g.,
stepping over or stepping onto objects. Most research in this
area has focused on treating footstep planning as a graph
search problem, commonly solved using the A∗ algorithm [3],
[4]. The dominant strategy involves computing an extended
sequence of footsteps that lead all the way to the target, which
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the robot follows closely using precise motion tracking. These
plans typically consist of 30 or more steps and require a few
seconds of computation time. At this timescale, replanning
while the robot is in motion becomes impractical. However,
real-world environments frequently present unexpected events
that demand immediate replanning [5]. Moving obstacles can
change direction unpredictably, requiring quick responses to
avoid collisions. To tackle these challenges, it is crucial to have
a controller with a short and reliable response time. Second,
the complex 10–20 DOFs’ kinematic model for robot joint
control leads to high computation workload. The kinematics
problem plays a crucial role in robotic motion control. Forward
kinematics refers to mapping from joint space to Cartesian
task space, while inverse kinematics involves mapping from
Cartesian task space to joint space [6]. Due to the complexity
of inverse kinematics [6], it is typically more challenging to
solve compared with forward kinematics. Moreover, when a
robot manipulator performs motion control, the computational
demands of inverse kinematics can significantly consume CPU
resources, slowing down the robot’s performance. Address-
ing this issue is therefore essential for improving efficiency.
Third, to maintain balance, special trajectory control of the
robot’s center of mass (CoM) through zero moment point
(ZMP) needs to be judiciously performed for fall prevention.
To enable certain behaviors in humanoid robots, such as
walking, motion planners must simultaneously consider the
dynamic effects of the resulting motion [7]. This is because
these robots rely on ground reaction forces at their supporting
foot or feet, which are inherently unilateral. This constraint
is effectively captured by the concept of the ZMP [8]. The
unilateral nature of the contact forces translates into the
requirement that the ZMP must remain within the boundaries
of the supporting polygon. When this condition is satisfied,
the robot avoids rotation along the edges of the supporting
polygon, ensuring stable contact as long as friction remains
sufficient. This is crucial for maintaining stable control of
humanoid robots.

Previous research has explored 2-D path planning, includ-
ing wavefront expansion of the A∗ algorithm for graph
searches [3], [9], the design of a path-planning processor
for 2-D/3-D autonomous navigation of micro robots [10],
and the development of an FPGA-based motion-planning
accelerator for dual-arm robot manipulation systems [11].
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Fig. 1. (a) Humanoid robot control diagram. (b) Power of robot control
platform and energy of path planning.

However, these studies do not support specialized humanoid
movements, such as stepping on or over obstacles. There
are also mixed-signal designs for robot control, includ-
ing an oscillator-based NeuroSLAM accelerator for mobile
wheeled robots [12], a time-domain mixed-signal neuromor-
phic accelerator with reinforcement learning for autonomous
micro-robots [13], and an efficient mixed-signal accelerator
developed for real-time swarm intelligence [14]. These designs
achieve remarkable energy efficiency for wheeled robots due
to their mixed-signal nature. However, they cannot support
more complex joint systems, such as those found in humanoid
robots, which typically control many more motors than the
2–4-DoF systems used in wheeled robots. Some works are
digital-based for robots but have not been demonstrated on
real robots to showcase their full capabilities. For instance,
a motion-control ASIC was designed primarily for industrial
robot arms [15], a ray-casting accelerator was developed for
edge robotics in augmented reality applications [16], and an
artificial intelligence processor with PVT compensation was
created for micro robots [17].

Despite the advancements in other works, a system-on-
chip (SoC) solution specifically for humanoid robots has been
lacking until now. As depicted in Fig. 1(a), a humanoid
robot control system comprises a high-level controller and
a low-level controller. The 3-D footstep planning module
and ZMP-based scheduler collaborate to generate steps and
the corresponding CoM trajectory toward the target. Once
high-level plans are established, the detailed CoM trajecto-
ries are stored in memory and sent to the kinematic model
with sequence control, after which joint control signals are
converted into motor control signals. As shown in Fig. 1(b),
compared with previous robot control platforms [3], [10],
[11], [14], [15], this approach achieves a two–four orders of
magnitude reduction in energy consumption for path planning,
representing a significant improvement.

To address the aforementioned challenges and improve the
performance of humanoid robot control, as shown in Fig. 2,

Fig. 2. Challenges of humanoid robot control.

this work introduces a 65-nm mixed-signal SoC designed
explicitly for humanoid robots, offering several key innova-
tions: 1) a time-domain [18], [21], [22] graph search engine
for 3-D footstep planning featuring 3-D search, D∗ replan-
ning [19] for on-the-fly adjustment, blocking of redundant
paths and efficient readout of search results; 2) a highly effi-
cient mixed-signal ZMP gait scheduler, crucial for maintaining
balance in humanoid robots; 3) a time-domain neural-network-
based inverse kinematic module for robot joint control; and
4) in situ demonstrations on a real assembled robot with the
65-nm SoC rendering 2.7× overall energy saving for graph
search and 18.4× higher energy efficiency for motion control
compared with prior works.

The rest of this article is organized as follows: Section II
presents an overview of the SoC top-level architecture and
the robot assembly. Section III delves into the time-domain
graph search ASIC for 3-D footstep planning and D∗ replan-
ning [19], including circuit details for the vertex, direction lock
(DL), vertex lock and unlock module, delay cells, and scan
chain tracing-back modules. Section IV covers the ZMP gait
scheduler and neurokinematics for low-level motion control.
Section V showcases the implementation and measurement
results obtained from the test chip, along with real robot
demonstrations and retrain methods with use cases. Section VI
concludes this article. This article is an extended version of
the conference publication in [20].

II. CHIP TOP-LEVEL ARCHITECTURE AND ROBOT
SYSTEM

A. Chip Top-Level Architecture

Fig. 3(a) and (b) illustrates the top-level architecture of the
chip, which includes: 1) a 40 × 40 time-domain graph search
engine with specialized mixed-signal circuits for high-level
3-D footstep planning; 2) a ZMP gait trajectory generator
for controlling the CoM for robot balancing; 3) a hybrid
time-digital domain neural network serving as an inverse
kinematic estimator for joint control; and 4) a motor control
module with UART to manage external motors via CAN bus.
Upon completion of high-level footstep planning, the ZMP
gait scheduler module passes the CoM trajectory in (X, Y, Z )

Authorized licensed use limited to: Northwestern University. Downloaded on May 01,2025 at 17:45:28 UTC from IEEE Xplore.  Restrictions apply. 



CAO et al.: 65-nm HUMANOID ROBOT SoC USING TIME-DOMAIN 3-D FOOTSTEP PLANNING 1341

Fig. 3. (a) Top-level architecture of the developed SoC. (b) Circuits’
implementation for sub-modules of the proposed SoC.

format to low-level joint control. The system then transitions to
low-level control, where the neurokinematic module converts
the Cartesian space of end-effectors into the 10-DoF joint
space for each motor. Final motion control commands are
transmitted through the motor control module using the CAN
bus and UART protocol.

B. Robot Assembly and Special Movement

Fig. 4 showcases the assembled robot system [23], high-
lighting both the front and back views of its motor and control
systems. The system includes a mini-FPGA that imports
control signals and communicates with the test chip via a
scan cable and driver board for direct motor control. The
test chip, mounted on a demo board, transmits joint angle
control signals through the UART interface using a CAN bus.
In this work, the map input is processed by the test chip for
3-D footstep planning, followed by the generation of the ZMP
trajectory pattern. The resulting data are then transmitted to
the kinematic module for low-level motor control.

Compared with wheeled robots [13], [14], the motion con-
troller for humanoid robots introduces several unique features
tailored to their distinct movements. Instead of visualizing the
environment as a 2-D grid map, the humanoid robot converts
a 3-D floor map into a 3-D grid map that includes the height
of objects. This allows the robot to decide whether to take
shortcuts by stepping over obstacles that would typically block
the way in a 2-D scenario. The ability to step on or over

Fig. 4. Humanoid robot assembly and features with gait control computing
flow.

obstacles enables the robot to navigate around them and reach
its target via a shorter route. In addition, the chip supports
efficient path replanning on the go when the environment
changes suddenly, and it blocks redundant paths to make quick
decisions with reduced power consumption. These features
enhance the effectiveness and energy efficiency of humanoid
robot control.

III. TIME-DOMAIN GRAPH ASIC FOR 3-D FOOTSTEP
PLANNING AND D∗ REPLANNING

A. 3-D Footstep Planning and D∗ Algorithm for Replanning

Three-dimensional footstep planning [24], [25], [26] can
be modeled as a shortest path problem using the A∗

algorithm [27]. In Fig. 5(a), the floor map is transformed into
a grid map, where white grids represent walkable areas and
darker grids indicate objects or platforms of varying heights.
Some objects are marked as traversable if their height is
manageable for the robot to step over or on, while others
are too tall and are considered obstacles, requiring the robot
to find an alternate route. For instance, a rod on the map
might be low enough for the robot to step over, so a 3-D
footstep planning approach would allow the robot to do so.
In contrast, a 2-D path-finding method would still treat the rod
as an obstacle, forcing a detour and resulting in a much longer
path. After the initial 3-D footstep planning is completed,
replanning is triggered when a change in the environment,
such as a fallen pillar, is detected, as illustrated in Fig. 5(b).
The robot follows the original 3-D footstep plan, indicated by
the blue dotted arrow, until it encounters the new obstacle.
At this point, a replanning algorithm is used to generate
an updated path, shown by the yellow dotted arrow, which
takes the environmental change into account. The robot then
abandons the previous route and follows the newly generated
path from the updated starting point toward the target. Unlike
the widely used A∗ algorithm, this work uses a more advanced
D∗ replanning algorithm [19], allowing the robot to adjust its
path dynamically while moving toward its destination. The
steps of the D∗ algorithm are detailed in Fig. 6. First, mapping
information is scanned into the graph ASIC for shortest path
calculation. Next, the shortest path is identified by the graph
ASIC, represented by the red arrows. When an environmental
change occurs, the affected nodes are detected, and a global
unlock signal is sent to these nodes and their successors—
defined as all the vertices originating from the changed nodes.
The connections to these successors are shown with blue
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Fig. 5. (a) Comparison of 3-D footstep planning and 2-D path finding
problem. (b) 3-D footstep replanning with changed environment.

arrows. Finally, a new starting point is set at the changed node,
triggering another round of graph search that only updates
the direction of the changed nodes and their successors. This
D∗ approach achieves 1.8× energy savings compared with
the traditional A∗ algorithm, which requires recalculating the
entire map. In this example, the changed nodes are blocked,
causing the new path to detour around them, following the
yellow arrows to reach the target.

B. Time-Domain Graph ASIC for 3-D Footstep Planning

Fig. 7 elaborates details of the 3-D footstep planning and
the time-domain graph search engine. While 2-D occupancy
grid maps typically meet the needs of wheeled robots [13],
humanoid robots necessitate additional terrain height informa-
tion to account for special movements of stepping over/onto
objects in 3-D space. Different from the widely used A∗

algorithm, a more sophisticated D∗ replanning algorithm [19]
was adopted in this work, enabling the robot to adjust its
path while heading to the destination. In the time-domain
circuit implementation shown in Fig. 7, a 40 × 40 vertex
array is deployed to generate locomotion trajectory. The map-
ping information, e.g., distance of single step and height of
stairs, are mapped into a programmable 2-bit delay cell at
interconnect of the vertexes. Inside each vertex, time-domain
signals are passed from eight directions, including four planar
directions similar as prior work [3] and another four directions
for the new dimension of height for stepping-over or stepping-
on movements. Each “vertex lock” circuit includes multiple
NAND, NOR gates, and a DFF for catching the earliest
time-domain signal and producing a “Lock” signal. A set of
DL modules are used to record the direction of the first-come
time-domain signal. The time-domain signals propagate as a
wavefront through the whole map resulting in the shortest path
being locked in the DL circuits.

Besides static planning, this work also supports D∗ on-the-
fly replanning when the environment is changed, e.g., an object
moved by the robot. Finally, rather than a full memory scan
outputting all the direction values as in [3], this design enables

Fig. 6. Footstep replanning example of D∗ algorithm.

Fig. 7. Time-domain graph ASIC and vertex design.

Fig. 8. Waveform of the scan chain tracing function.

only tracing back along the shortest path using the direction
information. As shown in Fig. 8, the shortest path is calculated
by the graph search engine and is indicated by a red arrow.
During the calculation, the vertices along the path are linked
based on the DL results. In the waveform, “0” signifies the
earliest arriving direction. If multiple “0”s appear, it means
the earliest arriving signals come from multiple directions, but
only one direction is selected as the result. For example, if the
target vertex’s DL_in shows a “0” in the “E” direction, the
vertex in the “E” direction will be linked to the target vertex.
The DL_out will then be scanned into the target vertex after
all the DL_in bits are sequentially scanned out, following the
sequence from steps 5 to 4, step 3, and so on, all the way
back to the start vertex.

As shown in Fig. 9, thanks to the described technique,
this work achieves a 29.1× speedup compared with the full
memory scan approach used in previous research [3]. The
replanning process delivers an average of 1.8× energy savings
compared with methods that do not use replanning. Overall,
the study realizes a 2.7× reduction in energy consumption
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Fig. 9. Comparison to prior work on latency of scan and energy of replanning.

for path planning compared with prior work [3], due to the
low-power techniques implemented in this study.

C. Circuit Design Detail of Graph Vertex

As illustrated in Fig. 10(a), the delay cell encodes mapping
information, such as single-step distances and stair heights,
into a programmable 2-bit delay cell located at the vertex
interconnections. In the figure, “00” denotes a standard single
step, “01” represents a step-on, “10” signifies a step-over,
and “11” is used for debugging purposes. The delay of each
cell reflects the time cost of its corresponding configuration.
An analog signal, Vtune, globally adjusts the delay across all
the cells. Each vertex receives time-domain signals from eight
directions. In Fig. 10(b) and (c), a set of DL modules record
the direction of the first-arriving signal. For example, in the DL
(W) module, if W is not the earliest signal, a “trig” pulse sets
DL_W to “1” to indicate the direction. If W is the earliest
signal, no “trig” pulse is generated, leaving DL_W at “0.”
Each “vertex lock” circuit includes multiple NAND and NOR
gates, plus a D flip-flop (DFF) to capture the earliest signal
and generate a “Lock” signal for further processing. When
the direction “S” is the earliest arriving signal, the DFF clock
signal toggles, producing the “Lock” signal simultaneously.

In addition to static planning, this work supports D∗ on-
the-fly replanning for dynamic environments. Sometimes, the
environment could change due to robot behavior, such as a
robot kicking or moving an object with robot hands. As a
result, the 3-D footstep planning needs to be updated based
on the latest map information. If redoing the entire map
in A star algorithm, it will be unnecessary, as the robot
has already moved to the new start point. So, a D star
algorithm enables only partially redoing 3-D footstep planning
and efficiently finding the shortest path using updated map
information. In hardware implementation, the unlock function
is managed by the circuit shown in the bottom right in Fig. 10.
For the changed nodes, an unlock_global signal is issued to
reset the vertex lock DFF. For their successors, the unlock
signal propagates along with the DL information to identify
all the nodes that need to be reset. For blocking functions,
a predefined configuration will be set for those nodes that
are at the corner of the map. It will stop the vertices from
propagating the pulses to avoid unnecessary path planning.
This approach achieves an average energy saving of 32.9%
across 50 random map search tasks.

IV. ZMP GAIT SCHEDULER AND NEUROKINEMATICS FOR
LOW-LEVEL MOTION CONTROL

A. Cart-Table Model and ZMP Gait Scheduler

Following our discussion on high-level 3-D footstep plan-
ning, let us move on to low-level gait scheduler and

Fig. 10. Circuit design details of a graph ASIC vertex. (a) Delay cell and
scan chain tracing-back module, (b) DL module of the vertex, and (c) vertex
lock module.

neurokinematic for motion control. Unlike robot cars or other
types of multi-legged robots, a humanoid robot must con-
sider maintaining balance. To address this, we developed a
ZMP-based gait scheduler to maintain stability while walking.
As illustrated in Fig. 11, the dynamics of a walking robot
can be described using a cart-table model. In the figure,
to counteract the momentum generated by the car’s gravity
(CoM) “mg,” the cart must move with an acceleration of ẍ .
And the torque τZMP at the supporting px is shown as this
formula. It is forced to be zero to control the robot to be
stable. By considering the ZMP dynamics, we can design a
gait scheduler to ensure the robot’s CoM follows a specific
trajectory, preventing the robot from falling. Fig. 12 provides
details on the ZMP-based CoM control for the gait scheduler
and the neurokinematic circuits for robot joint control. The
ZMP is the location where the total moment of the robot at the
ground is zero. For dynamic stability, the ZMP must remain
within the support region of the robot. ZMP is used to establish
the target trajectory for the robot’s CoM. This mixed-signal
ZMP phase generator achieves 3.4× power savings compared
with an equivalent digital solution.

A mixed-signal circuit [35], [36], [37] featuring a VCO and
multiplexers (MUXs) is used to generate a sinusoidal CoM
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Fig. 11. Robot cart-table model of ZMP.

Fig. 12. Comparison of ZMP trajectory for balance and power.

Fig. 13. Mixed-signal ZMP phase generator.

trajectory that ensures dynamic stability, commonly used for
simple pattern generation. In practical humanoid gait planning,
more flexible CoM trajectories, such as polynomial-based
ones, are also widely adopted. In this work, a sinusoidal CoM
trajectory (X, Y, Z) is produced and encoded as time pulses
for inverse kinematics computation. As shown in Fig. 13,
a ring oscillator with linear increased phases is used to convert
digital sine wave-like CoM trajectory, x, y, z into time pulses.
In comparison, digital solutions typically rely on LUTs, which
require many flip-flops for implementation [38]. In this work,
digital information is encoded as time delays, reducing power
consumption by avoiding the use of DFFs. In addition, the
phases are split into ZMP_LSB and ZMP_MSB for TDMAC
operation. This time-domain interface ensures compatibility
with the subsequent neurokinematic module.

B. Neurokinematics for Inverse Kinematics

As shown in Fig. 14, due to the highly complex trigonomet-
ric computation in IK, a neural network is used to approximate
the calculation. A neural network consisting of a TDMAC as
the hidden layer and a DMAC as the output layer is used
to convert CoM trajectory (x, y, z) in Cartesian space into θi

in joint space, a process known as inverse kinematics. This
calculation is particularly complex when the DoFs in robot
systems are high. Fig. 15 details the hardware implementation
of neurokinematics, featuring an 8-bit time-domain MAC [18],
[22], [28] developed using a bit partition technique. In this

Fig. 14. Neural estimator for inverse kinematics.

Fig. 15. Circuit and waveform of TDMAC with bit partition.

design, a pulse from the ZMP module controls the propagation
duration of the ring oscillator, while digital weights regulate
the propagation speed of the ring. The result is captured by a
counter, effectively performing an MAC operation in the time
domain. To further enhance energy efficiency, the 8-bit weight
is divided into LSB and MSB, with a pulse generator acting
as a time-domain carry signal. When the LSB result counter
is full, it triggers the pulse generator to create a carry pulse,
which then controls the gating signal along with the ZMP input
MSB.

As shown in Fig. 16, the proposed neural kinematics module
demonstrates a 2% loss compared with the ideal inverse
kinematic model, with an additional 1% accuracy loss due
to time-domain implementation. This is acceptable, as both
the ZMP method can tolerate errors within the ZMP region,
and the neural network is resilient to errors introduced by the
proposed mixed-signal scheme. This method achieves a 7.5×

area saving using the time-domain MAC with bit partition
technique, along with a 1.8× latency reduction and a 12.1×

area saving for inverse kinematics compared with its digital
counterpart.

C. Neural Estimator With Retrain Methodology

Fig. 17 shows a two- to three-layer fully connected
neural network trained to map ZMP-based CoM sine wave-
interpolated trajectories to joint angles, using a training set
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Fig. 16. Comparison of area and power with bit partition.

Fig. 17. Block diagram of neural estimator retrain.

derived from an ideal inverse kinematic model with functions
such as arctan, arcsin, and arccos. A sine-wave-shaped CoM
trajectory, generated under ZMP constraints, is used to com-
pute joint angles (θ1 foot, θ2 ankle, θ3 knee, θ4 hip roll, and
θ5 hip pitch) via the ideal inverse kinematic model, shown as
blue curves. This model serves as a reference for the neural
network, with training aimed at minimizing the MSE between
their outputs using ground-truth data as labels. Initially,
the model undergoes the first round of training. However,
errors due to quantization or time-domain variations arise,
as shown in Fig. 18(a). To address these errors, a second round
of retraining is conducted, updating only the output layer,
which significantly reduces the model’s MSE, as depicted
in Fig. 18(b). After optimization, the model is deployed on
the robot to evaluate its performance. Including real CoM
trajectories in training prevents unexpected Cartesian-to-joint
space mappings, ensuring all possible trajectories are sampled
to avoid model failure.

V. MEASUREMENT RESULTS AND EVALUATION FOR TEST
CASE

A. Chip Implementation

A mixed-signal 3-D footstep planning SoC was designed
using a 65-nm CMOS process. The real-world demonstra-
tion setup, shown in Fig. 19, includes the test chip and
environment. Fig. 20 presents the chip micrograph and imple-
mentation details. The active die area measures 3.34 mm2

(2 × 1.67 mm), with a nominal supply voltage of 1.0 V,
a maximum frequency of 1 MHz, and peak power consumption
of 432.8 µW at 1.2 V. The graph search engine features

Fig. 18. MSE of neural estimator output with quantization and retrain
methodology. (a) MSE of neural estimator output with quantization. (b) MSE
of neural estimator after retraining.

40 × 40 vertices, 1600 × 8 edges, and a node delay of 1.1 ns
at 1.2 V.

B. Measurement Results

Fig. 21 presents the measurement results for CoM trajec-
tory, linearity, vertex delay, and power breakdown. In the
ZMP-based CoM trajectory measurement, the designed ZMP
trajectory is encoded as time-domain delays at time frames
t2 and t5 in the first row, with the corresponding measured
robot swing distances for the actual CoM trace shown in
the second, third, and fourth rows. The integral non-linearity
(INL) of the TDMAC is less than 1 LSB. For vertex delay,
the search rate reaches 910M operations at 1.2 V, with peak
power consumption of 432.8 µW. The power breakdown
indicates 207.9 µW consumption for the graph search array
and 185.2 µW for digital circuits, including memory banks
and DMAC. The power consumption for the ZMP/VCO and
TD NN circuit is also shown at 1 V running at 1 MHz.

Fig. 22 presents 2-D view and wavefront result from the
chip. The top row shows the results of normal 3-D footstep
planning with blocking. In the 3-D view, the robot steps over
obstacles and walks toward the target, following the planned
steps. The blue line in the 2-D view represents the path
projected onto the grid map. In the wavefront result, brighter
colors indicate longer delay, and pulses propagate across the
entire map as a wavefront, except for blocked nodes.

C. Comparison to Prior Works

Table I illustrates a comparison table with prior works.
In the comparison table, this work presents the first 3-D
footstep planning SoC chips for humanoid robots. It sup-
ports both high-level footstep planning and low-level motion
control. In terms of energy efficiency for control, this work
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Fig. 19. Robot demonstration across multiple time frames.

Fig. 20. Chip micrograph and specifications.

Fig. 21. Measured ZMP-based CoM trajectory, linearity, vertex delay, and
power breakdown.

achieves 645 Hz/mW, which is 18.4× higher than previous
work, thanks to the mixed-signal circuit implementations. The
energy efficiency for the neural network ranges from 3.2 to
6.5 TOPS/W. For path planning, this work demonstrates a
more complex 3-D footstep planning with a 1.6× higher search
rate and an overall 2.7× improvement in energy per task due
to low-power features.

D. Demonstration and Evaluation of Test Cases

Fig. 23 illustrates more complex graph scenarios involving
blocking and replanning algorithms. In the baseline scenario,
the robot can step over a narrow rod and make several turns
to reach the target. In the blocking example, two corners of
the graph are obstructed, preventing the time-domain signal
from propagating through the blocked vertices. Consequently,
the footstep planning [29], [30] remains unchanged from the

Fig. 22. 3-D footstep planning and wavefront result.

Fig. 23. Footstep planning with blocking and replanning.

baseline. In the environmentally changing scenario, the narrow
rod becomes a wider obstacle, preventing the robot from
stepping over it. As a result, the robot detours from its original
path and finds a new route to reach the target.

Fig. 24 shows the test board setup, which includes the test
chip and LDOs to supply the chip’s voltage source. An XTAL
is used to generate a precise clock for producing motor control
signals via the UART protocol. A level shifter converts the
motor control signal from the on-chip 1.8 to 3.3 V for motor
control. In the test environment, a 3 × 3 m area with a
40 × 40 grid map is constructed, featuring several paper boxes
as obstacles [31], [32], [33], [34]. A mop is placed on the
floor, enabling the robot to step over the rod and find a shorter
path compared with a wheeled robot. To further enhance the
scalability of the proposed methods, the graph engine can
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TABLE I
COMPARISON TABLE WITH PRIOR WORKS

Fig. 24. Test board and robot test environment setup.

be adapted as a path planning engine for various types of
robots, including quadrupeds and robotic cars. In addition, the
low-level neurokinematic module is highly scalable and can
be applied to any jointed robot, such as quadrupeds, which
also require real-time inverse kinematic calculations. This
flexibility makes the proposed system versatile and applicable
to a wide range of robotic platforms, paving the way for
broader adoption across diverse robotic applications.

VI. CONCLUSION

This work presents a 65-nm SoC chip for humanoid robot
control with in situ demonstration. It features a time-domain
graph search engine for 3-D footstep planning. D∗ on-the-
fly replanning and a tracing back method along the shortest
path with blocking of redundant paths are proposed. A mixed-
signal ZMP-based gait scheduler is developed to maintain
robot balance, and a mixed-signal neurokinematic module is
developed for inverse kinematics in motion control. Overall,
this approach achieves 2.7× energy saving in graph search and
an 18.4× improvement in energy efficiency for motion control
compared with previous works.
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