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Abstract— This work presents a special unified compute-
in-memory (CIM) processor supporting both general-purpose
computing and deep neural network (DNN) operations, referred
to as the general-purpose CIM (GPCIM) processor. By imple-
menting a unique CIM macro with two different bitcell arrays
and a central compute unit (CCU), GPCIM can be reconfigured
to a CIM DNN accelerator or a CIM vector central processing
unit (CPU). By using special reconfigurability, dataflow, and
support of a customized vector instruction set, GPCIM achieves
SOTA performance for end-to-end deep learning tasks with
enhanced CPU efficiency and data locality. A 65 nm test chip was
fabricated demonstrating a 28.3 TOPS/W DNN macro efficiency
and a best-in-class peak CPU efficiency of 802 GOPS/W. Benefit
from a data locality flow, 37%–55% end-to-end latency reduction
on artificial intelligence (AI)-related applications is achieved by
eliminating inter-core data transfer in traditional heterogeneous
system-on-chip (SoC). An averaged 17.8× CPU energy efficiency
improvement is achieved compared with vector RISC-V CPUs in
the existing machine learning (ML) SoCs.

Index Terms— Compute-in-memory (CIM), deep neural net-
work (DNN) accelerator, end-to-end performance, general-
purpose computing, machine learning (ML), system-on-chip
(SoC), vector central processing unit (CPU).

I. INTRODUCTION

AS THE size of the deep neural network (DNN) model
rapidly grows for better accuracy and performance in

machine learning (ML)/artificial intelligence (AI) applica-
tions, the demand for hardware energy efficiency is also
quickly rising, especially for edge device applications. Vari-
ous optimization techniques have been explored at different
design hierarchies, such as quantization [1], [2], variable
precisions [3], [4], [5], adaptive clocking [6], sparsity tech-
niques [7], [8], and data compression [9]. One major
bottleneck is the frequent access for the on-chip memories
such as SRAM, scratch pads, and buffers limiting the further
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improvement of the performance and energy efficiency of
DNN accelerators. As a result, compute-in-memory (CIM)
has become one of the most popular circuit-level solutions to
overcome the memory access bottleneck for DNN processing.
CIM enhances computing efficiency by allowing the arithmetic
processing tasks, i.e., multiplication and accumulation (MAC)
operations to happen at the original data site, i.e., the SRAM
bitcell arrays. Since the data movement is eliminated between
the storage units and processing units, CIM can dramatically
reduce the memory access power. Recent published CIM
works [10], [11], [12], [13], [14], [15], [16], [17] have
demonstrated CIM SRAM techniques can improve the ML/AI
accelerator energy efficiency from 0.5–1 to 10–100 TOPS/W.

Despite the ongoing boom of CIM processors, one lack of
consideration is CPU operations. As for end-to-end processing
of AI-related tasks, a general-purpose computing unit, e.g.,
CPU, is necessary for pre/post-processing, data preparation
for neural networks (NNs), accelerator configuration, and non-
MAC tasks, especially for edge device applications which
usually have higher proportion of pre-processing and data
management workload to deal with the raw data from sensors
or cameras. Such workload is usually performed by a CPU
which contributes significant processing time. As shown in
Fig. 1(a), a heterogeneous architecture consisting of both
CPU and accelerator is commonly used for tasks involving
ML/AI [18], [19], [20], [21], [22], [23]. This traditional
architecture engages a CPU core, an accelerator, and a direct
memory access (DMA) engine for data transfer.

Fig. 1(b) shows a detailed processing flow to briefly explain
the design methodology of a heterogeneous AI SoC. In this
SoC, the accelerator is a peripheral for AI acceleration which
uses the CPU as a control processor. In the beginning, the
CPU can decode the ML/AI models to instruction commands
(CMD) to control/configure the accelerator and itself. In addi-
tion, for some end-to-end AI applications, the raw data needs
some general-purpose pre-processing work which can be done
by the CPU. After that, prepared input data, weights, and
accelerator commands will be sent to the digital accelera-
tor/CIM core for ML/AI processing by the DMA engine. After
the results are generated for the current layer of an ML model,
the DMA transfers the output data back to the CPU core doing
some data preparation work for the next layer inference such
as data reshuffling. After the inter-layer data processing work
finishes, another round of data movement and ML inference
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Fig. 1. (a) Conventional heterogeneous architecture for DNN SoC, (b) details
of the processing flow for the heterogeneous architecture including a CPU and
an accelerator, and (c) run time breakdown for the end-to-end processing of
AI-related tasks from the prior DNN SoCs.

will be launched for the next layer of the model. Basically, the
CPU is inserted to control the accelerator and data transfer as
well as finish the general-purpose work that the accelerator
cannot do in a complete end-to-end ML workload.

As shown in Fig. 1(c) on the reported workload in various
accelerators-enriched SoCs, DNN processing time often takes
only 12%–45% of total run time, leaving the performance
and energy efficiency bottlenecked by CPU processing and
data transfer [18], [19], [20], [21], [22], [23]. For instance,
as reported in the published SoC [22] from Meta on appli-
cations of augmented reality (AR) and virtual reality (VR),
to finish the first layer of a convolutional neural network
(CNN) model for eye gaze tracking, over 80% of the execution
latency is consumed by initial data preparation and data move-
ment. The accelerator only takes 0.18 ms for inference out
of a 5.36 ms total latency. Another example is a CNN-based
SoC for on-the-fly visual recognition and classification of
insect blobs from Intel [19]. The data pre/post-processing,
such as image/sensor capture, extraction, accelerator/camera
configuration, and so on, takes over 70% of the run-time for
the end-to-end procedure.

Unfortunately, considering the whole SoC operations and
the end-to-end performance of ML/AI applications, even

Fig. 2. Challenges of the end-to-end AI tasks using existing digital CIM
processors and contributions of this work.

though the recent CIM developments [10], [11], [12], [13],
[14], [15], [16], [17] can achieve orders of magnitude effi-
ciency improvement for MAC operations, the CPU-related
general-purpose computing and data transfer are still not
addressed by the prior CIM works limiting the performance
and energy efficiency of the whole SoCs. Previously, a general-
purpose instruction CIM was delivered [16], however, missing
the support of efficient DNN computing. Special neural CPU
schemes were developed aiming at eliminating SoC-level core-
to-core data movement by using reconfiguration techniques to
convert a digital accelerator core to a CPU core [24], [25],
[26]. However, pure digital implementation in the above works
limit the energy efficiency of the operations compared with
prior CIM-based designs [10], [11], [12], [13], [14], [15],
[16], [17].

To overcome the aforementioned challenges, as shown
in Fig. 2, this work proposes a unified general-purpose
CIM (GPCIM) architecture. The main contributions of this
work include: 1) compared with advanced DNN-based CIM
design [10], [11], [12], [13], [14], [15], [16], [17], GPCIM is
a unified digital CIM architecture to focus on the end-to-end
ML workload bottlenecks, which is not only for efficient DNN
inference but also supporting general-purpose vector CPU
processing; 2) the state-of-the-art (SOTA) energy efficiency
has been achieved on the CPU mode for general-purpose
processing in end-to-end ML workload by exploiting the
simpler pipeline, reduction of memory access and high data
locality of CIM architecture; and 3) special dataflow and
dedicated instruction sets are developed for seamless data
sharing and smooth mode switching between CPU and DNN
operations to overcome the inter-core data movement overhead
in conventional ML SoC rendering significant improvement
on end-to-end performance. A 65 nm test chip has been
fabricated to demonstrate the benefits of the proposed GPCIM
in end-to-end ML tasks.

The rest of the article is organized as follows. The
overview of the top-level architecture of GPCIM and mode
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reconfigurations are introduced in Section II. Section III
illustrates the details of the CIM technique supporting CPU
operations with efficiency improvement. Design details are
provided for the central compute unit (CCU) core and the
customized CIM vector instruction set. Section IV introduces
the special dataflow to avoid expensive data movement. The
implementation and measurement results obtained by the test
chip are shown in Section V along with demonstrations on
end-to-end ML use cases. Section VI draws the conclu-
sion. This article is a detailed extension of the conference
publication in [27].

II. TOP-LEVEL ARCHITECTURE OF GPCIM WITH TWO
RECONFIGURATION MODES

A. GPCIM Top-Level Architecture

Fig. 3 shows the chip top architecture. Four CIM cores are
designed for parallel processing with independent instruction
cache and weight SRAM for each core supporting both DNN
inference and general-purpose computing. Each GPCIM core
has special dataflow controllers to cooperate with CIM macro
for different computing processes. Differing from traditional
CIM macro [10], [11], [12], [13], [14], [15], [16], [17], one
GPCIM macro contains two different bitcell arrays, i.e., data
cache activation memory (DAMEM) and data cache output
memory (DOMEM). Four reconfigurable CCUs are imple-
mented between DAMEM and DOMEM in GPCIM macro
to handle four 32b results accumulation in the DNN process
and four 32b vector executions for general-purpose computing.
Two pulse generators are attached bitcell arrays to control the
read, write, and ML inference. Sense amplifiers, latches, and
buffers for two bitcell arrays support the data read/write.

Each bank of DAMEM has 32 × 32 bitcells with a
9-transistor (9T) architecture for each bitcell. As the details
shown in Fig. 4(a), a 3-transistor (3T) nand gate is inserted into
a traditional 6-transistor (6T) SRAM bitcell architecture for 1b
multiplication in each DAMEM bitcell for DNN operations.
The multiplication result of each DAMEM bitcell can directly
reach the CCU for accumulation through independent DNN
read-out (DOUT) lines instead of reading through the bitline.
Each bitcell has its own DOUT line for maximum throughput
support. The DOMEM bitcell architecture is also presented in
Fig. 4 (b). It is an 8-transistor (8T) bitcell with two bitlines
and two wordlines supporting dual-port read/write. DOMEM
performs two reads and one write within one clock cycle
controlled by the CIM controller and the pulse generator. The
DOUT line connection details and its routing layout are shown
in Fig. 3. 32 DOUT lines are routed on the top layers of the
bitcell layout using metal 4 and metal 6 of 65nm technology.
This routing solution fully utilizes the bitcell width to avoid
the area overhead of the DAMEM.

B. Reconfiguration Modes of GPCIM

Fig. 5 shows that GPCIM can be configured to two
different CIM modes. Vector CPU mode supports paral-
lel general-purpose workload in end-to-end ML applications
while DNN mode focuses on the MAC operations of DNN
inference. Both modes utilize CIM techniques for high energy

efficiency. In DNN mode, DAMEM is configured as input
memory which can realize the multiplication of inputs and
weights inside of the bitcell array with the results sent to the
CCU for accumulation. DOMEM is used for output memory
to store the MAC results. In the vector CPU mode, DOMAM
and DAMEM are reused as the data cache and register file
(RF) providing the data for vector-based execution. As for
the CCU used for DNN accumulation and CPU execution,
the CCU can be reconfigured to four adder trees in DNN
mode and four ALUs as near-bitcell execution units for
CPU mode with 8.8% total overhead by logic reuse. Unused
logic and SRAM banks are gated for power saving in both
modes.

C. Control Sequence of GPCIM Vector CPU Mode

Control flow in the CPU mode is demonstrated in Fig. 6
including five operation phases in a single cycle, i.e., write-
back, pre/dis-charge, latch update, and vector execution. The
phases are determined by the control signals generated by the
pulse generator which is designed using a customized tunable
delay buffer chain. The write-back phase is for data writing
from the previous cycle. Executable data reading is done by
pre/discharging the bitlines of two bitcell arrays. In the latch
update phase, the sense amplifier and latch receive the data
from the bitcell arrays and send it to the CCU for vector-
based execution. This control flow can also be used for reading
the partial sum results from DOMEM for accumulation under
DNN operation.

III. DETAILED IMPLEMENTATION OF RECONFIGURATION
AND CENTRAL COMPUTE UNITS OF GPCIM

A. Efficiency Improvement of Vector CPU

As mentioned in the previous sections, supporting vector
general-purpose processing by CIM techniques brings signifi-
cant benefits to the energy efficiency of end-to-end application
processing. Fig. 7 delivers a detailed explanation of the power
reduction of GPCIM. To perform a fair apple-to-apple com-
parison, a customized digital RISC-V vector pipeline core is
also built as an equivalent counterpart with the same number
of vector lanes, maximum vector length (MVL), RF size, and
Level 1 (L1) cache size. The digital counterpart runs at the
same clock speed as GPCIM to show the power reduction
breakdown in Fig. 7(a). Fig. 7(b) shows the detailed microar-
chitecture of the digital RISC-V counterpart with a 5-stage
pipeline. Compared with the counterpart, the shorter 2-stage
pipeline of GPCIM leads to reduced flip-flops power by 7.6×

which is one of the major power contributors in the digital
RISC-V core. Vector RF is eliminated by integrating it into
the CIM data cache with similar data read/write functionalities.
All the execution units are integrated into CIM macro with
lower data access costs than the case of L1 cache in the
digital counterpart, achieving 1.9× cache power saving and
1.3× ALU power saving. Certain pipeline logic in the digital
counterpart such as forwarding and other bypass logic is also
removed with 2.1× logic power saving. In general, 4.6×

total power reduction is achieved by GPCIM rendering energy
efficiency improvement.
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Fig. 3. Top-level architecture of the developed GPCIM.

Fig. 4. (a) Detailed design of 9T cell in DAMEM and (b) detailed design
of 8T in DOMEM.

Fig. 5. Dataflows for two reconfiguration modes of GPCIM: DNN mode
and vector CPU mode.

B. Logic Reuse of Central Compute Units

In Section II, CCU is introduced as a core processing
functional unit for both DNN mode and CPU mode. Fig. 8
shows the details inside the CCU which is designed based
on four 32b adder trees with additional vector CPU recon-
figuration overhead. Obviously, because CIM techniques have
stringent requirements on the area efficiency of the macro,

Fig. 6. Control sequence of vector CPU mode of GPCIM.

efficient logic reuse is implemented in the CCU to support
both DNN mode and CPU mode. Examples are shown in
Fig. 8 for three different CIM CPU instructions: vector
multiplication instruction (VMUL), vector Boolean instruc-
tion (VBoolean), and vector shift instruction (VShift). For
VMUL instruction, the majority of adders are fully reused
to build a 32b multiplier to realize 32b multiplication in four
cycles. VShift instruction exploits the reuse of shifters and
registers which are also used for the partial sum of shift
accumulation in the DNN mode. Certain overhead is paid for
complete general-purpose processing such as small Boolean
function modules for the VBoolean instruction. Unused logics
in different modes are gated by the clock gating functions.
As shown in Fig. 9, like [11], a customized 16T full adder
design is integrated into the CCU with 28% power reduction
and 32% area reduction compared with a conventional 28T full
adder.

Thanks to the efforts of logic reuse of CCU, compared
with a SOTA baseline CIM design which contains four 32b
adder trees, GPCIM macro observes a total 8.8% area overhead
to realize vector general-purpose computing, which is shown
in Fig. 10. In addition, the impact of power consumption
overhead for DNN processing caused by the additional logic
is 5.3%.
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Fig. 7. (a) Power saving of GPCIM compared with a reference RISC-V
design. (b) Detailed explanations of power reduction.

C. Customized CIM Vector Instruction Set

In order to support the special GPCIM-based vector
execution, a customized 32b integer instruction set (ISA)
architecture is developed and cooperated with the GPCIM
architecture. As introduced in Fig. 11, the 32b GPCIM
instruction format contains three special bits as the location
pointers. The first two bits are used to indicate the source
locations of two operands. The third bit is for the destination
of the execution result from CCU. In the location pointer,
0 represents DAMEM and 1 represents DOMEM. Examples
of the GPCIM instructions are listed in Fig. 11(b), which
contains Boolean instructions, arithmetic instructions, shift
instructions, data move instructions, branch instructions, and
instructions for special functions of GPCIM. The first CCU
unit and first 32 columns of the CIM array will be used as a
scalar unit to provide scalar value if the instruction is needed.
MVCSR instruction is designed to configure special control
and status registers (CSRs) in GPCIM. SWITCH instruction
is used to assist a smooth mode switching from CPU mode
to DNN mode. PCS is used to store the program counter
(PC) and pipeline status before the GPCIM switches to DNN
mode to continue the general-purpose processing after DNN
inference.

An example of mode switching from GPCIM CPU mode
to DNN mode is illustrated in Fig. 12. Total configuration and
switching latency are between 15 and 20 run cycles which
includes 4–6 cycles for CSR configuration of the controllers
and pulse generators, 6–8 cycles for the parameter set up of

Fig. 8. Examples of logic reuse of CCU in vector CPU mode of GPCIM.

Fig. 9. Customized adder design in CCU and power saving.

Fig. 10. GPCIM DNN processing power and area overhead for CPU
reconfiguration support.

DNN processing, up to 4 cycles for the CSR configuration in
the CCU and the execution of SWITCH instructions.

By implementing the customized ISA, GPCIM can achieve
vector-based general-purpose processing. Fig. 13 demonstrates
the power benefits across several instructions compared with
the function-similar instructions running in the RISC-V digital
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Fig. 11. (a) 32b customized CIM vector instruction standard format. (b) Main
instructions in the customized instruction set.

Fig. 12. Switching and configuration control from CPU mode to DNN mode.

Fig. 13. Energy reduction from different GPCIM instructions.

counterpart mentioned in Section III-A. GPCIM achieves
an averaged 4.45× power reduction for the sampled vector
instructions.

IV. SPECIAL DATAFLOW FOR END-TO-END ML TASKS
WITH DATA LOCALITY

A. Special Dataflow With Smooth Mode Switching

Because of the reconfigurable macro architecture of
GPCIM, a special data movement scheme is also developed to

Fig. 14. Special dataflow in GPCIM for end-to-end processing with data
locality.

reduce the data movement as in the traditional heterogeneous
SoC for end-to-end operations. The detailed dataflow is shown
in Fig. 14. In most cases, GPCIM starts from the CPU mode
performing crucial general-purpose processing work as prepro-
cessing and data preparation for the DNN inference. Especially
for some edge device applications [19], [22], the CPU is
needed to deal with pre-processing workloads for the raw
data from the camera, LiDAR, sensors, and so on. After the
general-purpose computing of GPCIM in CPU mode, the input
data for DNN inference is stored at DAMEM which serves as
the data cache in CPU mode but an input CIM bitcell array
for DNN mode. An instruction-controlled mode switching is
launched after that which means the GPCIM in DNN mode can
directly process the input data stored in the DAMEM for DNN
inference, e.g., the first layer of a DNN model, without any
data transfer as in the traditional architecture. After finishing
the first layer of DNN inference, the GPCIM stores the results
in DOMEM which is the output memory. Then the GPCIM
switches back to CPU mode and directly uses the DNN results
to perform general-purpose processing work, such as data
alignment, batch normalization, and padding to prepare the
data for next-layer DNN inference. Because DOMEM is also
one of the data caches in GPCIM, expensive data movement
can be eliminated. In addition, the vector CPU mode of
GPCIM can perform post-processing work seamlessly after
DNN inference. The data locality for DAMEM and DOMEM
helps GPCIM achieve end-to-end performance improvement
by avoiding data movement between two cores.

B. Examples of Image Classification With CPU Workload

Fig. 15(a) shows examples of image classification tasks
considering the CPU workload and data transfer. In these
examples, the CPU is focusing on the inter-layer data prepa-
ration works, such as batch normalization, pooling, and data
alignment. In the image classification tasks, GPCIM achieves
52%–56% end-to-end latency improvement for VGG16 and
ResNet18 models on ImageNet and Cifar10 datasets compared
with a representative heterogeneous SoC, i.e., Gemmini [21],
which contains a RISC-V CPU pipeline core and an ML accel-
erator. The latency benefits are due to the elimination of data
transfer and parallel computing acceleration on CPU mode for
the inter-layer data management work. Fig. 15(b) shows the
DNN inference accuracy on Cifar10 and ImageNet datasets
with 8b integer quantization. Both VGG16 and ResNet18
models can achieve similar accuracy compared with prior 8b
works [6], [7], [8].
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Fig. 15. Eng-to-end performance on image classification tasks compared
with heterogeneous SoC Gemmini [21].

Fig. 16. Chip micrograph and specifications.

V. MEASUREMENT RESULTS AND EVALUATION FOR
TEST CASE

A. Chip Implementation

A 4-core GPCIM processor was designed and fabricated
using a 65 nm CMOS process. The chip micrograph and
implementation details are shown in Fig. 16. The active die
area is 1.52 mm2 (0.79 mm × 1.915 mm) with 1.0 V nominal
supply voltage and 245 MHz maximum operating frequency.
Total CIM macro size is 9 KB and total SRAM size is 41 KB
including the instruction caches and the weight SRAM banks.
The chip can support 8b integer bit precision for DNN mode
and 32b customized vector integer ISA for the CPU mode.
The chip was tested with the supply voltage scaled down to
0.5 V. An FPGA board is used in the chip testing for data
streaming in and out of the test chip through scan IO ports
for verification and measurement.

Fig. 17. Measured frequency and power with voltage scaling.

Fig. 18. Measured energy efficiency of DNN in GPCIM with voltage scaling.
Throughput and efficiency of CPU in GPCIM in comparison with existing
RISC-V SoCs.

B. Measurement Results

Fig. 17 shows the measured power and frequency with the
supply voltage scaled down to 0.5 V. The nominal supply
voltage for both DNN modes and CPU modes is at 1.0 V
with 8.4 mW of DNN power at 200 MHz and 4.9 mW of
CPU power at 245 MHz nominal frequency for four cores.

As for the DNN mode, Fig. 18 shows the energy efficiency
for both the macro and the SoC with the supply voltage
down to 0.5 V. The results are based on the INT8 bit pre-
cision. The macro-level energy efficiency for GPCIM in DNN
mode is 14.8 TOPS/W at 1.0 V and 28.3 TOP/W at 0.6 V.
The SoC-level energy efficiency for DNN operation achieves
7.62 TOPS/W at 1.0 V and 16.5 TOPS/W at 0.6 V. On the
other hand, as for the CPU mode of GPCIM, the throughput is
3.92 GOPS at 1.0 V and 0.69 GOPS at 0.6 V with 32b integer
precision. The peak energy efficiency for the CPU mode of
GPCIM is 802 GOPS/W at 1.0 V and 1.75 TOPS/W at 0.6 V.

Fig. 18 also illustrates a comparison of GPCIM’s CPU
efficiency and throughput with existing published CPU SoCs
with scalar and vector RISC-V processors [25], [28], [29],
[30], [31], [32], [33]. The reported throughput and efficiency
from existing SoCs are normalized to the same voltage as
GPCIM. The throughput of GPCIM is less than many prior
solutions due to the lower clock speed of GPCIM to support
memory operations. However, GPCIM achieves a significant
17.8× energy efficiency improvement for general-purpose
computing over existing RISC-V vector processor SoCs [28],
[29], [30], [31].

In Fig. 19, six vectorized benchmarks are evaluated on
GPCIM and the digital counterparts of RISC-V mentioned
in Section III-A with the same SRAM size, MVL, and
clock speed as GPCIM for fair comparison. Canneal, Stream
Cluster, and the Black Scholes benchmark are from the
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Fig. 19. Efficiency comparison with a digital RISC-V on different bench-
marks [34], [35], [36].

PARVEC benchmark suite [34]. Canneal is an element-based
engineering computing benchmark with data parallelism.
Stream Cluster is also a benchmark that can be used for
vector processors for the data mining application. Black
Scholes is a benchmark from financial analysis applications.
GPCIM achieves 4.66×, 4.98×, and 4.34× energy efficiency
improvement over three benchmarks from PARVEC. One
matrix operation-related vector benchmark is also evalu-
ated on GPCIM and the digital counterpart, i.e., Atax from
PolyBench [35]. GPCIM achieves 3.14× energy efficiency
improvement. Because of the heavy workload of vector mul-
tiplication in Atax, the efficiency for both GPCIM and digital
counterpart are not as high as other benchmarks. Another data
mining benchmark is Kmeans from Rodinia [36] in which
GPCIM can be 4.25× more energy efficient than the RISC-V
digital counterpart.

Since the digital counterpart is not an open-source design
and the processors in Fig. 18 have large systems supporting
more complicated general-purpose computing. To make a
fair comparison, GPCIM is compared with compact vector
processors that support the RISC-V vector extension (RVV)
in Table I. As Table I shows, GPCIM can achieve best-in-
class CPU energy efficiency with an appropriate equivalent
RVV subset support compared with Spatz [37], Arrow [38],
and Vicuna [39] thanks to the CIM technique. The efficiency
of Spatz [37] for MAC operations is close to the CPU mode
of GPCIM because of an integrated group of MAC units
(MACUs) in its vector ALU, which makes it similar to a small
digital accelerator with higher efficiency.

C. Comparison With Prior Works

Table II illustrates a comparison table with prior tape-out
works. Compared with digital CIM for DNN [10], [11], the
GPCIM achieves similar SOTA energy efficiency on DNN
inference. In CPU mode, GPCIM achieves the best-in-class
energy efficiency of 802 GOPS/W. Compared with a prior
instruction-supported CIM [16], GPCIM achieves a 7.3×

efficiency improvement for the multiplication instruction. For
apple-to-apple comparison, the efficiency numbers in [16]
are scaled to 32b in the table. Compared with a digital
reconfigurable design supporting DNN and CPU [25], GPCIM
achieves 10× higher DNN efficiency and 118× higher CPU
efficiency. Compared with digital heterogeneous SoC support-
ing DNN and CPU [29] [32], GPCIM achieves 19× higher
DNN efficiency and 45× higher CPU efficiency.

TABLE I
COMPARISON TABLE WITH COMPACT

VECTOR PROCESSORS

D. Evaluation on Test Cases

To demonstrate the benefit of the developed GPCIM,
a detailed end-to-end case study is implemented on the chip for
simultaneous localization and mapping (SLAM). In SLAM,
a mobile agent such as a robot or a self-driving car constructs
or updates a map of an unknown environment while simulta-
neously keeping track of its own position in the environment.
For SLAM, CNN-SLAM [40] is one of the commonly used
algorithms for DNN-based SLAM solutions on edge devices.

Fig. 20(a) illustrates the detailed sub-tasks in the CNN-
SLAM algorithm. Except for DNN processing, there are
four major tasks that contribute over 76% of the workload:
camera pose estimation (12%), depth refinement (31%), key-
frame creation (15%), and pose graph optimization (18%).
The four tasks have complicated operations, such as vector
division and exponentiation that require a CPU to handle.
In addition, since DNN inference for depth prediction only
happens on key frames, parallel general-purpose computing
is highly demanded for preprocessing the raw data from
the camera. CNN-SLAM algorithm is implemented on both
GPCIM and a heterogeneous SoC Gemmini [21] for evaluation
and comparison. As shown in the detailed processing flow
in Fig. 20(b), the accelerator utilization in the traditional
architecture is fairly low for the CNN-SLAM process because
the accelerator needs to wait for the RISC-V core to finish
the CPU workload and launch the data movement. GPCIM
can eliminate expensive data transfer efforts to speed up the
processing of CNN-SLAM algorithms. In addition, the CPU
core in Gemmini is a single scalar pipeline core. GPCIM,
on the other hand, provides more computing power with
parallel processing to improve the latency of the frame-based
data processing.

Fig. 21(a) shows the energy efficiency comparison for
different sub-tasks between GPCIM and Gemmini. As for
the general-purpose workload, the GPCIM achieves 7.7×

efficiency improvement on camera pose estimation, 8.0×

efficiency improvement on depth refinement, 7.6× efficiency
improvement on the key frame creation, and 8.2× efficiency
improvement on pose graph optimization. The energy effi-
ciency for DNN inference of GPCIM is 35× higher than
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TABLE II
COMPARISON TABLE WITH PRIOR WORKS

Fig. 20. (a) CNN-SLAM application [40]. (b) Difference in processing
sequence between conventional SoC and GPCIM.

Gemmini thanks to the CIM techniques. Note that Gemmini
contains a larger SRAM size for both the CPU core and

Fig. 21. (a) Efficiency and (b) run cycle comparison between Gemmini [21]
and GPCIM when running CNN-SLAM.

accelerator core than GPCIM in this work. Fig. 21(b) shows
the end-to-end latency improvement of GPCIM for the CNN-
SLAM algorithm. GPCIM achieves an overall 37.3% run
cycle reduction than Gemmini due to vector-based parallel
processing and reduction of data transfer efforts.

Another demonstration is built to showcase the benefit of
GPCIM in human motion detection as shown in Fig. 22(a).
A binary neural network (BNN) model is trained to perform
the hand gesture classification by using the recorded surface
electromyography (sEMG) signal and accelerometer sensors
based on the Ninapro database [41]. 87.9% of the computing
task comes from the heavy feature extraction workload being
performed by the CPU as shown in Fig. 22(b). The feature
extraction jobs include the extraction of four time-domain
features from six channels of the sEMG signals including
mean, histogram, variance, and slope sign change [42].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:30:16 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 22. (a) Human motion detection with NN-based edge computing.
(b) Workload breakdown for the end-to-end motion detection task.

Compared with the efficiency of Gemmini CPU in
Fig. 23(a), GPCIM achieves 6.7×, 9.3×, 7.6×, and 7.9×

improvements over four feature extraction operations for each
channel. The energy efficiency of GPCIM BNN inference is
improved by 27× compared with the accelerator in Gemmini
due to the use of the CIM technique. Since the majority of
CPU workload for the motion detection is channel independent
and has less data dependency than the preprocessing in the
CNN-SLAM case. Compared to the SLAM case, the motion
detection test case can fit better on the vector processor
with parallel computing benefits. The GPCIM can achieve
a 61.1% latency reduction compared with Gemmini mainly
due to the vector CPU’s parallelism. The latency benefit from
data transfer is smaller in this case because the BNN model
is relatively small with only four fully connected layers,
requiring less data transferring than the DNN operation in
the previous test case. Although the motion detection test
case has a more vectorized CPU workload than SLAM, its
preprocessing workload cannot be fully vectorized. 45%–55%
of the CPU workload still has data dependency which means
using Gemmini as a reference is still reasonable since this is
the best complete open-source design of CPU + accelerator
architecture we can find for the analysis of latency breakdown
in the VLSI design flow running different programs and test
cases.

E. GPCIM Scalability Discussion

To illustrate the scalability of GPCIM, a design-level exper-
iment with estimations is shown in Fig. 24 with 4, 8, and
16 cores of GPCIM. Since the multi-core system requires some
inter-core connections, a more complicated digital system bus
is designed for 8 and 16 GPCIM cores which consumes
extra power, especially in CPU mode. In that case, the CPU
efficiency benefit drops from 7.8× to 6.8× compared with
the fixed Gemmini [21] design which is used in SLAM. The
DNN efficiency benefit is stable at ∼35× because this bus
is not frequently used during DNN inference which can be
gated. When the system bus is used in DNN mode, some
arbiter functions can also be gated since the data loading

Fig. 23. (a) Efficiency and (b) run cycle comparison between Gemmini [21]
and GPCIM when running motion detection test case.

Fig. 24. GPCIM scalability estimation with 4, 8, and 16 cores running the
SLAM testcase compared with Gemmini [21] from Fig. 20.

in DNN inference is uniform and predictable which leads to
less external power consumption over 4 cores. Considering
the data dependency of the CPU workload which cannot
be efficiently accelerated by adding more GPCIM cores, the
latency reduction for 8 and 16 cores is only increased to 49%
and 52% compared with the Gemmini [21] used in Fig. 20.

VI. CONCLUSION

This work proposes a unified GPCIM processor supporting
both vector general-purpose computing and DNN operations.
GPCIM macro contains two bitcell arrays (DAMEM and
DOMEM) and CCU which can support smooth mode switch-
ing. Cooperated with special customized ISA, logic reuse,
and special dataflow, GPCIM realizes high data locality for
reduction of data transfer and 37%–55% end-to-end perfor-
mance improvement for different test cases. Thanks to the
CIM techniques with vector CPU support, GPCIM achieves
7.6–17.8× energy efficiency improvement compared with
existing ML SoCs. The 65 nm test chip shows a maximum of
28.3 TOPS/W for DNN macro efficiency, 16.5 TOPS/W for
DNN SoC efficiency, and a best-in-class peak CPU efficiency
of 802 GOPS/W.
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