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Abstract— In this paper, a real time physiological signal 
classification system with an integrated ultra-low power 
collaborative neural network classifier is presented. The 
developed system includes a specially designed system-on-chip 
(SoC) and a wireless communication module that transmits 
classification results to a  smartphone app as a convenient user 
interface in real-time training. The customized SoC provides 
ultra-low-power and low-latency sensing and classification on 
physiological signals, e.g. EMG and ECG.  A special 
collaborative neural network classifier was implemented to 
allow multiple chips to collaborate on classification. As a result, 
only low dimensional data is being transmitted over the network, 
significantly reducing data communication across multiple 
modules.  A demonstration of EMG based gesture classification 
shows 1100X less power consumption from the developed SoC 
compared with conventional embedded solutions.  The 
transmission of only low dimensional data from the collaborative 
neural network classifier leads to a 50X reduction of data 
communication and associated energy for multiple sensing cites.  

I. INTRODUCTION 

Nourished by the rapid development of wearable 
electronic devices, the new generation of human assistive 
biomedical devices with built-in computational intelligence 
has brought tremendous benefits and improvements to the 
quality of our life.  While smartphones have been most 
commonly used as personal assistive devices, they lack the 
measurement support of specific physiological signals, e.g. 
electromyography (EMG), Electrocardiography (ECG), and 
low-latency real-time computing capabilities. As a result, 
more advanced health-care systems utilize various sensor 
technology, or sensor fusion techniques, to provide deeper 
diagnosis and more accurate detection of human activities. The 
commonly used sensing schemes for such a wearable 
biomedical system include sensors for EMG, ECG, 
Electroencephalogram (EEG), accelerometers, inertial 
sensors, electrodermal sensors, strain/torque sensors, etc. 
Utilizing embedded classifiers, this kind of health-care 
biomedical system supports low-latency real-time 
physiological data processing aimed to classify human’s 
activities, e.g. gesture recognition, fall detection or critical 
medical states, e.g. seizure capturing.   Recent examples of 
such biomedical system include EMG based detection system 
for prosthetic arms [1-2], EMG based speech recognition 
system [3], inertia sensor-based motion capture suit for virtual 
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reality technology [4], accelerometer-based fall detection 
device for Parkinson’s disease [5, 6], EMG and ECG detection 
devices for sleep therapy [7, 8], and Electrodermal 
conductance sensor-based human emotion/stress detection 
system [9].   

With the recent advancement of artificial intelligence, the 
classification of bio-signals, e.g. EMG, ECG, EEG, using 
advanced machine learning techniques has become an 
essential requirement while also introduces huge computing 
challenges to wearable biomedical devices.  For instance, for 
a system of robotic prosthetic arms, a large number of 
channels, e.g. 46 to 72 channels are being processed in real-
time with very low latency requirements leading to 
tremendous burdens on computing devices [10].  

For such a real-time bio-signal processing system, four 
major metrics define the system performance, i.e. 
classification accuracy, computing latency, data 
communication efficiency and power consumption. For 
achieving higher accuracy, researchers have proposed a 
variety of bio-signal processing algorithms based on different 
machine learning algorithms including decision trees [11], 
support vector machine (SVM) classifiers [12], principal 
component analysis (PCA) [13], convolutional neural 
networks (CNN) [14, 15]. For instance, it was reported that the 
accuracy of the decision tree could achieve 88.1% in seizure 
classify while still providing high efficiency in energy, area 
and latency [11]. An SVM based system-on-chip (SoC) 
achieved an accuracy of up to 95% for seizure detection [12]. 
A PCA-driven detection of heart rate was proposed to provide 
contactless monitoring through video data [13]. Furthermore, 
a CNN based model was proposed in recognition of epileptic 
seizures by converting the EEG signal into spectrogram stacks 
[14]. To achieve low power consumption, an analog front end 
(AFE) circuit has been developed with a power consumption 
of only 1.4µW for a wearable ECG monitoring system [16].  
An event-driven Analog-to-Digital Converter (ADC) for 
wireless ECG sensors was developed for reducing sampling 
points by 25% for ECG signals compared with the 
conventional Nyquist sampling scheme [17].  

Despite a large amount of implementation presented so far 
in bio-signal processing, most of the existing demonstrations 
suffer from the following issues: (1) either numerous chips 
need to be used for sensing, amplification, and digital 
classification or a large amount of raw data has to be 
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transferred to PC or smartphones for post processing leading 
to high form factors, high power consumptions or high 
computing latencies; (2) When multiple sites of sensing are 
needed, such as muscles from upper arm and forearm, there is 
a lack of efficient networking schemes to support collaborative 
classification based on signals from multiple sensing 
locations; (3) there is a lack of convenient interface to the end 
users for visual assistance of their operations.  To overcome 
such issues from existing demonstrations, in this paper, we 
demonstrate a wearable bio-signal processing system using an 
ultra-low-power system-on-chip (SoC) with a built-in neural 
network classifier [18]. The features of the proposed system 
include (1) a single SoC chip with integrated low noise 
amplifier for EMG/ECG sensing and a built-in neural network 
classifier with a state-of-art power consumption of only 30µW, 
which is over a thousand times lower than a commonly used 
off-the-shelf embedded microprocessor; (2) a collaborative 
neural network classifier that pre-processes raw channel data 
from multiple sensing locations and transmits the low 
dimensional data for final classification leading to a significant 
saving on data communication, i.e. 50X reduction of inter-site 
data communication and associated energy; (3) a convenient 
human interface from a smartphone to provide virtual aids to 
the user to monitor the classification tasks in real-time.   Fig. 1 
illustrates the system configuration with the detailed 
description provided in the following sections. 

 

 

Fig 1: Proposed bio-signal classification system with 
communication of only low dimensional data from the classifiers. 

II. CHALLENGES & METHODS 

Fig. 1 shows the overall signal flow of a bio-signal sensing 
and classification system.  A typical system consists of a 
sensing layer for analog amplification and analog to digital 
conversion, a computation layer for feature extraction, and 
classification of bio-signals, a communication layer for data 
transmission to the external devices, and a human machine 
interface layer for human interactions.  In addition, for real-

time operation such as robotic prosthetic arms, a very stringent 
latency requirement at several millisecond levels is required 
constraining the time consumed for each layer [19].  The major 
challenges of such a system are summarized below:  

 Low power consumption for embedded feature 
extraction and classification:  The power consumption has 
become the major limiting factor for wearable devices due to 
the limited battery life.  Unfortunately, the digital back-end 
computation for feature extraction and classification 
incorporating the modern machine learning algorithms 
requires a tremendous amount of power.  For instance, the 
widely used TI’s OMAP processors in real-time rehabilitation 
systems consume hundreds of milliwatts of power while 
another commonly used embedded microprocessor, ST’s 
STM32L151 consumes 35 milliwatts of power [20]. This 
results in only 10 hours of total operation from a Lithium 
battery ignoring other system power consumptions, such as 
analog LNA, ADC, and Bluetooth communications. The high 
power consumption leads to a constant burden of battery 
replacement or recharging efforts.  To enable sustainable 
operation of wearable devices, low power operation for digital 
computation is needed, which requires a special Application 
Specific Integrated Circuit (ASIC) architectures.  In this work, 
we make use of a customized system-on-chip with fully 
integrated analog front-end and digital back-end classifier 
consuming only 30µW power. Different from conventional 
microprocessors, the design utilizes a neuromorphic 
architecture which integrates computational neurons for 
processing neural network leading to ultra-low power 
consumption and low latency operation, e.g. 5~15ms 
satisfying the requirement of real-time operation. We 
especially demonstrated the developed system using an EMG 
based gesture classification tasks while other signal processing 
jobs, e.g. ECG or accelerometer based detections, can also be 
performed from the developed system.   

 Multi-site sensing and collaborative classification: Based 
on the locations of sensors or the types of signals being 
processed, various sites of human body, e.g. arms, legs, are 
often being sensed simultaneously and the classification tasks 
commonly require a fusion of all the channels’ information.  
Conventionally, raw data from all the channels at various 
locations are transmitted into a central location for 
classification [21].  To achieve such a goal, each site, e.g. 
upper arm or forearm is provided an analog front-end chip for 
amplifications and digitalization. The raw digitalized data at 
each sampling period is transmitted through a network to a 
centralized location for post-processing.  This leads to huge 
data traffic and energy consumption.  As a result, there is a 
strong benefit of bringing data processing near sensory nodes 
and only transmitting low dimensional data through the 
network as demonstrated in this paper.  As shown in Fig. 1, we 
propose an integrated collaborative neural network scheme 
where the neural network classifier on the SoC chips can 
collaborate with each other and only low dimensional data is 
being transmitted over a simple data clock network rendering 
significant reduction of data traffic.  An analysis of the 
collaborative neural network is provided in this paper.  

 Human Machine Interface for Virtual Aids: Smartphone 
has become the most widely used human computing platform.  
As a result, it is the most convenient method to build a human 
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machine interface between the bio-signal processing system 
and a smartphone. A wireless communication and visual 
interface from smartphone Apps bring easy access to the 
biomedical system for the users or patients. Unfortunately, 
most of the existing demonstration lacks such a human 
machine interface.  In this work, we developed an Android 
Apps which works with the bio-signal sensing device and a  
Bluetooth module to display user-friendly virtual 3D graphs 
on the smartphone screen.  The overall latency of the system 
is measured to be very short and can be used for many 
biomedical applications such as online training or diagnosis, 
augmented reality (AR) assisted rehabilitation and so on. 

 

Fig. 2 Ultra-low Power SoC Chip Architecture.  

III. ULTRA-LOW-POWER SOC ARCHITECTURE 

Fig. 2 shows the top-level architecture of the implemented 
ultra-low-power biomedical signal processing SoC. Up to six 
channels of differential signals or twelve channels of single-
ended channels of analog inputs supporting both wet and dry 
electrodes are first sent into AC coupled two-stage low noise 
amplifiers (LNA). A programmable gain of up to 57dB with 
a bandwidth between 5 Hz to 3 kHz is provided from the LNA 
suitable for EMG and ECG applications, as well as a variety 
of other wearable sensors. Mixed-signal circuits at each input 
channel were implemented to realize analog to digital 
conversion and feature extractions supporting commonly 
used time-domain features such as mean, variance, slope sign 
changes, zero-crossing, and histograms.  

A three-layer neural network classifier is implemented for 
gesture classification from the extracted features.  Multiple 
on-chip SRAM banks with a total size of 5.6kB are used to 
store the pre-trained 8-bit weights for inference tasks.  
Different from the conventional microprocessor, the design of 
the neural network classifier follows a neuromorphic 
architecture where multiple neurons with integrated 
multiplier-accumulation (MAC) units and sigmoid 
activations functions are used to perform the neural network 
inferences.  The use of multiple neurons and separation of 
neural layers brings an advantage of scalable architecture, i.e. 
multiple neural networks can collaborate to construct a larger 
network. As shown in Fig. 2, in multi-chip operation mode, 
the outputs from intermediate neurons from the hidden layer 
are transmitted across an inter-chip network through a global 

bus consisting of data, clock, and a start signal.  During 
networking, each chip is assigned a chip ID with the first chip 
serving as a master chip and providing a networking clock 
signal for the rest of the chips. At each clock cycle, every 
neuron takes turns to transmit its output value bit-by-bit. Once 
the first chip is finished, the chip with chip ID of 2 will 
continue until all chips and all neurons finish transmitting.  
While one chip is transmitting, all the rest chips receive the 
transmitted data and record the corresponding neuron output 
by counting the cycles being transmitted.  After all 
communication is finished, the master chip proceeds to finish 
up the classification of the entire neural network generating 
resulted labels, as well as a ready signal for triggering external 
device and optional variance feature values, which are special 
channel information for subsequent robotic operations when 
used in prosthetic applications.  

IV. BENEFITS OF LOW DIMENSIONAL DATA TRANSMISSION 

In this section, we perform analysis on the comparison 
between the conventional data communication scheme and 
proposed low dimensional data communication scheme as 
illustrated in Fig. 1.  For supporting multiple locations, e.g. 
gait classification involving upper arm and forearm, or  
multiple limbs, the physiological signals, e.g. EMG, need to 
be gathered from multiple sites around the human body.  A 
cluster of multiple channels of EMG signals from the same 
muscles are sensed at each site.  This leads to the requirement 
of transmitting large amount of multi-bit raw data sampled at 
each sampling clock period, e.g. kHz, across long distance 
into a central processing unit for feature extraction and 
classification in a conventional setting. To realize the data 
communication, traditionally, analog front-end chip including 
LNA and ADC is used to sense and digitalize the signals and 
a data bus, e.g. I2C is used to transfer data across multiple 
chips [22]. As a result, in a traditional scheme, the total 
amount of clock cycles (and similarly energy consumption) 
for transmitting multi-channel data to the central classifier 
within one classification window can be calculated in 
equation (1). 

 
𝐶𝑦𝑐𝑙𝑒௧௢௧ _ூଶ஼ = 𝑁஼௛ × 𝑁ோ௘௦ × 𝑓௦௔௠௣௟௜௡௚ × 𝑡௪௜௡ௗ௢௪   (1) 
 

where the 𝑁஼௛  is the number of analog signal channels needed 
to transmit, 𝑁ோ௘௦ is the ADC resolution, 𝑓௦௔௠௣௟௜௡௚ is the ADC 
sampling frequency and the 𝑡௪௜௡ௗ௢௪  is the length for one 
classification window. Based on equation (1), it is observed 
that the total amount of clock cycles required for transmission 
increases proportionally with channel numbers, sampling rate 
and ADC resolution. As the typical clock frequency of basic 
I2C protocol is 100 kHz, only 6 channels of data can be 
transmitted using an 8-bit ADC with 2 kHz sampling rate. 
Further increase on the number of channels or resolutions will 
require higher clock frequency with an increase of total 
energy consumptions. In addition, the volume of data for 
transmission is significantly large leading to huge 
communication bottleneck and energy consumption. 
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Compared with the traditional scheme, in our proposed low 
dimensional communication (LDC) scheme, instead of 
transmitting the high dimensional raw signals from each 
channel, each sensor node performs its own computation of 
feature extraction and hidden layer neural network 
computation.  The calculated outputs from hidden-layer 
neurons are transmitted over the communication channel to 
the rest of the node in the network. Once the transmission is 
finished, final classification is performed by the master chip 
to generate the final label. In this communication scheme, the 
number of clock cycles used and energy costs in one sampling 
window can be calculated by equation (2). 

 
𝐶𝑦𝑐𝑙𝑒௧௢௧௔௟_௅஽஼ = 𝑁௡௘௨௥௢௡ × 𝑁௕௜௧ × 𝑁௡௢ௗ௘       (2) 
 

where 𝑁௡௘௨௥௢௡ is the number of neurons in the hidden layer, 
𝑁௕௜௧  is the number of bits of neuron network, 𝑁௡௢ௗ௘ is the 
number of chips inside the system. 

As an example of our system, 12 channels were used for a 
two-chip system, the 𝑁௡௘௨௥௢௡ is 24 in each SoC chip and 8-
bit operations are used in the neural network. Assuming the 
communication clock in the LDC is the same as 
I2C, 𝑓௦௔௠௣௟௜௡௚  is 2 kHz and 𝑡௪௜௡ௗ௢௪= 200 ms with 100 ms 
overlap window in a typical EMG classification application, 
the saving of data cycles/energy compared to traditional 
operation can be calculated by equation (3): 
  

𝑅𝑎𝑡𝑖𝑜ா = 𝐶𝑦𝑐𝑙𝑒௧௢௧௔௟_ூଶ஼/(2 × 𝐶𝑦𝑐𝑙𝑒௧௢௧ ಽವ಴
)  

 

=
ே಴೓×ேೃ೐ೞ×௙ೞೌ೘೛೗೔೙೒×௧ೢ೔೙೏೚ೢ

ଶ×ே೙೐ೠೝ೚೙×ே್೔೟×ே೙೚೏೐
          (3) 

 

 
   (a)                                   (b)  

Fig.3 Comparison between the two schemes. (a) Total number of 
transmission cycles from conventional (I2C) and proposed 
(LDC) communication schemes with different numbers of 
channels. (b) Required transmission clock frequency from the 
two schemes with different numbers of channels.  
 

Fig.3(a) shows the calculation from (3) with various 
numbers of channels being process.  The proposed LDC 
scheme maintains a 50X saving in total number of cycles 
compared to the traditional I2C scheme when the number of 
channels were increased from 6 channels to 48 channels. 
Fig.3(b) shows the required communication clock frequency 
in these two communication protocols versus the number of 
channels in use. In conventional communication scheme, all 
channels data were directly sent to the classifier. The 
frequency required to transmit all the data was proportional to 
the number of channels.  In the proposed LDC communication 
scheme, assuming all channels were evenly divided into three 

sensor nodes, the required clock frequency only increases from 
96kHz to 140kHz with 6 channels to 72 channels leading to 
6X to 8X reduction of the required transmission clock 
frequency. A small increase in the clock frequency was due to 
the gradual increase of the number of neurons (increased with 
roughly the square root of the numbers of input channels) to 
maintain final accuracy when more input channels are 
connected to each chip. Because the transmission only 
happens to the pre-processed hidden neurons’ output data, the 
required communication cycles do not increase as fast as the 
conventional scheme. Minor degradation of classification 
accuracy is observed from benchmarks of EMG based gesture 
recognition.  The collaborative neural network schemes cause 
the total classification accuracy rate to drop by around 2% 
compared with the conventional scheme due to the separation 
of fully connected neurons. 

V. BIO-SIGNAL SYSTEM WITH USER INTERFACE 

 A bio-signal classification system was built incorporating a 
bio-signal SoC module, a Bluetooth interface module and a 
mobile App specially built for Android smartphones. 

A. Bio-signal SoC Module 

Left of Fig.4(a) shows the implemented bio-signal 
classification module. This module consists of the bio-signal 
classification SoC, bias generator circuits, power 
management chips and digital interface.  

The dimension of PCB board is 53 mm x 36 mm, powered 
by CR2032 coin battery and Texas Instruments TPS745 
adjustable LDOs for power management.  The TPS 745 LDO 
provides a wide range of output voltages from 0.55V to 1.8V, 
suitable for the dynamic voltage frequency scaling (DVFS) 
operation of the SoC chip as described in Section III whose 
core voltages can scale from 0.6V to 1.2V. The operation 
latency requirement must be satisfied when DVFS is applied. 
Several analog reference voltages were generated on the 
board by resistor ladders. The outputs of the SoC chip, e.g. 
classification labels, are directly sent out from the chip to the 
Bluetooth interface module. 

B. Bluetooth Interface Module 

Although the SoC module already delivers most of the tasks 
for real-time classification, to support a convenient human 
machine interface (HMI), an off-shelf Bluetooth module is 
utilized for communicating with user’s smartphone. Right of 
the Fig.4(a) shows the Pyboard SF6W module used for 
Bluetooth communication. The Pyboard SF6W module 
comes with an STM32F722 microcontroller and a CYW4343 
WiFi/ Bluetooth module, which supports programming with 
micropython language and Bluetooth Low Energy(BLE) 
communications. SF6W is used in our setup to read output 
labels from the SoC chip and transmit via BLE protocol to 
external mobile App. 

C. Mobile App for User Interface 

An Android mobile App was developed to receive the 
output labels from the Bluetooth module and emulate virtual 
arm responses to the output label. The mobile Apps can be 
used for training of patients with a disability using a prosthetic 
device.  As shown in Fig.4(b), a 3D model of the prosthetic 
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arm is displayed on the mobile App corresponding to the 
classification results of the bio-signal processing modules 
with low latency.  
 

 
Fig.4 Photos of the developed biomedical system. (a) Bio-signal  
SoC  module with the special SoC, LDO, battery, etc. and 
Bluetooth module; (b) Screenshot of the mobile App;(c) System 
setup on a real user; (d) Fabricated chip within a QFN52 
package. 

VI. RESULTS 

The SoC test chip was fabricated in TSMC 65nm low 
power technology. Fig.4 (d) shows the fabricated chip with a 
dimension of 2mm by 2mm in a QFN52 package. The total 
amount of power consumed by the SoC chip is measured at  
12 to 30µW with supply voltage between 0.6 to 1.2V when 5-
15ms computation latency requirement was fulfilled, which is 
more than 5X lower than the previous SVM based SoC chip 
for seizure detection [23] and more than 1100X lower than a 
conventional embedded solution based on STM32 
microprocessor [20]. The supporting LDOs consume 280µW 
static power, which can be further optimized. Single coin 
battery can support the SoC module for at least 200 hours. 

Fig.4(c) shows the whole system setup on a real user. The 
measurement procedures were approved by the Northwestern  
University IRB. Two sensor nodes with an SoC chip at each 
node were mounted on the upper arm and forearm with a 
wired communication channel between two nodes. The upper 
arm node senses the signal from biceps brachii and triceps 
brachii while the forearm node senses signals from extensor 
muscles and flexor muscles of the forearm to classify the 
gestures. The Bluetooth module was connected to the forearm 
node to read the final output labels from the SoC module and 
send the labels to the smartphone App. The smartphone App 
displays the corresponding 3D gesture movement based on 
the received label. 

Fig.5 shows the measured communication waveforms 

during the gesture classification process. In each half of the 
200ms operational window, i.e. 100ms overlapped sampling 
window, each sensor node samples multiple channels’ EMG 
signals. The rising/falling edge of the global start signal 
triggers each sensor node to propagate their features into the 
hidden layer of neural network classifier for processing, 
requiring about 1ms to complete. Each node subsequently 
sends out their hidden layer neuron output data, with around 
4ms delay per node. Once all networking neurons finish data 
transmission, the output layer of the neural network in the 
master chip will complete the inference tasks and send out the 
label and ready signal to the Bluetooth module. The total 
processing time for two nodes was measured at around 10ms 
as in Fig. 5. The following 6 spikes of the ready signal are the 
variance values of a selected channel for the use of external 
prosthetic devices.  

 

 
Fig. 5 Measured waveforms of operations of two-chip system.  
 

 
Fig. 6 Measured processing time breakdown in single node, two 
nodes and three nodes operation. 
 

Fig.6 shows the measured latency breakdown in a single 
node, two nodes, and three nodes operation modes. The time 
was measured by the rising edge of the start signal to the time 
the App starts to respond to the classification label. In the 
single node’s operation mode, the fastest response of 1.2ms 
was observed since the neural network proceeded without 
waiting for any data from the other nodes.  In multi-node 
operations, each chip takes about 4ms to broadcast their data 
and the master chip takes 1ms to complete the operation with 
a total of 9ms and 13ms processing time in two nodes and 
three nodes setting respectively. The total operation time was 
dominated by the Bluetooth module’s transmission time and 
mobile app’s response time. The BLE module has an 18ms 
delay based on measurement. The smartphone App has a 
25ms response time from the operating system. The total 
latency of the whole system is about 60ms, which is fast 
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enough for any direct user interface operation.  Note that in a 
real-time system such as a robotic prosthetic arm where 
latency is critical, the SoC chip supports the required latency 
of only a few milliseconds.  The BLE and Apps are only for 
user interface and do not require extremely fast response.   

VII. CONCLUSION 

In this paper, we present a wearable bio-signal 
classification device for real-time applications. The system 
includes a specially designed ultra-low power SoC, a 
Bluetooth interface module and a smartphone App for low 
latency applications such as prosthetics for rehabilitations. 
The SoC only consumes 30µW and embeds a collaborative 
neural network classifier which allows only low dimensional 
data being transmitted across multiple chips for multi-site 
classification. A demonstration of EMG based gesture 
classification showed more than 1100X power reduction from 
the SoC chip compared with the conventional embedded 
solution.  A 50X reduction in data communication with low 
latency in real-time operation was also achieved due to the 
collaborative neural network classifier from the developed 
system.  
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