
12 • 2019 IEEE International Solid-State Circuits Conference

ISSCC 2019 / SESSION 19 / ADAPTIVE DIGITAL & CLOCKING TECHNIQUES / 19.4

19.4 An Adaptive Clock Management Scheme Exploiting
 Instruction-Based Dynamic Timing Slack for a General-
 Purpose Graphics Processor Unit with Deep Pipeline and
 Out-of-Order Execution
Tianyu Jia, Russ Joseph, Jie Gu

Northwestern University, Evanston, IL

Cycle-by-cycle dynamic timing slack (DTS), which represents extra timing margin
from the critical-path timing slack reported by the static timing analysis (STA), has
been observed at both program level and instruction level. Conventional dynamic
voltage and frequency scaling (DVFS) works at the program level and does not provide
adequate frequency-scaling granularity for instruction-level timing management [1].
Razor-based techniques leverage error detection to exploit the DTS on a cycle-by-
cycle basis [2]. However, it requires additional error-detection circuits and
architecture-level co-design for error recovery [3]. Supply droop-based adaptive
clocking was used to reduce timing margin under PVT variation, but does not address
the instruction-level timing variation [4]. Recently, instruction-based adaptive clock
schemes have been introduced to enhance a CPU’s operation [5-6]. For example,
instruction types at the execution stage were used to provide timing control for a
simple pipeline structure. However, this scheme lacks adequate consideration for
other pipeline stages whose timing may not be opcode dependent [5]. In [6], the
instruction-execution sequence was evaluated at the compiler level with the timing
encoded into the instruction code. The scheme considers all pipeline stages but relies
on in-order execution of instructions for proper timing encoding from the compiler.

Several unaddressed critical issues limit the exploitation of DTS into more complex
CPU or general-purpose graphics-processor unit (GPGPU) platforms, as shown in
Fig. 19.4.1. First of all, all the existing work are based on a simple in-order pipeline
structure, where the instruction execution sequence can be predicted ahead of time.
For a more complex GPU architecture, there could be multiple vector SIMD units
within one compute unit. The instructions issued to each SIMD and other execution
units are dynamically scheduled across multiple wavefronts, leading to the difficulties
predicting the runtime execution of instructions at the compiler stage. Secondly,
existing works are based on shallow pipeline stages with a single core. Fig.19.4.1
shows the simulated dynamic timing slack distribution across 10 pipeline stages of a
GPGPU core used in this work [7]. With a deep pipeline and multicore operation, every
stage may become a timing bottleneck rendering difficulty in timing management tasks
across pipeline stages and requiring clock synchronization across domains, e.g. multi-
cores and memory. Thirdly, solutions are lacking when non-execution pipeline stages,
e.g. the fetch stage, become the timing bottleneck, which limits the performance
benefit by applying DTS techniques.

To overcome the challenges, we present an instruction-driven adaptive clock
management scheme with the following features: 1) Use of on-chip critical-path (CP)
“messengers”, which are different from critical-path monitors, to help predict the
appearance of the critical path one cycle earlier for dynamic clock scaling. The
combination of real-time CP messengers and multi-stage timing arbiter circuits
provide an in-situ cycle-by-cycle clock management. 2) Hierarchical clock circuitry
including a global PLL, local delay-locked lock (DLL), and an asynchronous clock
interface are used for multi-core clock management across clock domains. 3) An
elastic pipeline clocking scheme, developed to mitigate timing bottlenecks within non-
execution stages and enhance error-tolerant machine-learning (ML) applications.

Figure 19.4.2 shows the system diagram and the pipeline architecture of the
implemented processor, which is a simplified design of an open-source GPGPU
architecture following AMD Southern Islands ISA [7]. The chip includes two compute
units (CUs), each with 10 pipeline stages including Fetch, Wavepool, Decode, Issue
(two stages), Execution (four stages) and Writeback. Inside the execution stage, there
are 4 SIMD vector modules with both integer and floating-point modules, and a scalar
ALU. The two CUs share an L2 memory bank for the data communication through an
asynchronous interface. Fig. 19.4.2 shows the critical-path messengers, which are
developed to pessimistically predict the appearance of critical paths in the next clock
cycle. Two types of messengers are used. For non-execution stages, e.g. Fetch,
Wavepool, etc., the critical paths are traced at the roots of the operation, i.e. D pin of
flip-flops. The messenger is formed by detecting transitions on critical signals that
will trigger the critical paths, delivering a clock-cycle lead time for the clock controller
to react. For the Execution stage, the real-time issued instruction opcodes are used
as messengers. The selection of messengers is determined through an internally
developed transitional static timing analysis approach, where cycle-by-cycle critical
paths are identified at given pipeline conditions. Overall, less than 1% of registers are
selected as messengers, leading to negligible area overhead. All the messengers are
combined inside a timing arbiter, which issues the final clock period value based on
the worst-case timing from all messengers.

Figure 19.4.3 shows the hierarchical clocking scheme enabling instruction-driven
clock management. A global PLL delivers the clock to the local DLL for each CU and
associated L1 cache. Compared with a PLL, the use of the DLL reduces area overhead
needed for clocking each CU. All the phases on the DLL delay chain are equally delayed
and carefully matched, with one of them dynamically selected through a glitch-free
multiplexer for cycle-by-cycle clock period adjustment. The DLL can be locked with a
programmable number of stages, from 30 to 60, providing wide locking range and
fine phase selection resolution. At each CU, a timing arbiter combines “messengers”
from all pipeline stages and arbitrates the clock period for the current cycle. The timing
adjustment step for each messenger is provided by a small register file. For simplicity,
only dynamic shrinking of the clock period is allowed. Due to the dynamic clock period
of each CU, an asynchronous interface is used to establish data communication
between two CUs and L2 caches. A double-triggered data buffer is used to ensure
proper latching of the incoming data even with misalignment of clock phases.

As shown in Fig.19.4.4, an elastic clocking mode is created to allow additional timing
margin for non-Execution stages to mitigate critical timing bottlenecks. Essentially,
the clock period for each pipeline stage can be redistributed. Tunable delay modules
are inserted at the clock root of each pipeline stage rendering elasticity of timing
margin for each stage. As a result, the DLL output clock period remains short due to
redistributed pipeline clock. To enhance the performance of the GPGPU for ML
applications, e.g. multiplication operations of neural networks, the elastic clocking
scheme can apply more aggressive timing for the execution stage where timing errors
are tolerable.”

Figure 19.4.5 shows the measurement results. The clock for each CU core and selected
critical-path messengers were routed out on PCB boards for probing. Measured
waveforms confirmed the proper clock management based on the detected CP
messengers. Data from RFs and caches were scanned out for verification of proper
execution. The instruction-driven adaptive clock scheme has been tested using eight
kernel programs, achieving up to 18.2% performance improvement or equivalently
30.4% energy savings using a lower supply voltage. Fig. 19.4.6 shows the additional
energy benefit of using the elastic pipeline clocking for ML. The MNIST dataset is
tested using floating point SIMD for inference. When allowing timing error to happen,
4.6% additional energy savings is obtained without accuracy degradation. At 2%
accuracy loss, an additional 8% energy saving can be achieved. The scheme was also
tested from nominal 1V down to 0.4V, showing similar performance gains. Comparing
with prior work [1], this work achieves fine-grained instruction-level clock
management for a GPU processor and obtains significant benefits beyond program-
level DVFS. Comparing with Razor techniques [2], there is no error detection flip-flops
or pipeline recovery needed. The benefit can be maintained down to 0.4V as the
improvement does not trade off hold timing. Compared with previous supply droop-
based adaptive clocking [4], this work exploits deterministic instruction-level timing
variation, and overcomes multicore, deep pipeline, multi-thread execution challenges,
faced by previous simple CPU operations [5-6]. For each CU, the timing arbiter and
messengers contribute to 1.7% area overhead. 1.6% additional area was introduced
by the min-delay padding for the special elastic-clocking mode. The DLL design with
elastic-tunable buffers consumes about 1.5% area of the CU. Fig. 19.4.7 shows the
die micrograph.

Acknowledgements:

This work was supported in part by the National Science Foundation under grant
numbers CCF-1116610 and CCF-1618065.

References:

[1] P. Meinerzhagen, et al., “An Energy-Efficient Graphics Processor Featuring Fine-
Grain DVFS with Integrated Voltage Regulators, Execution-Unit Turbo, and Retentive
Sleep in 14nm Tri-Gate CMOS,” ISSCC, pp. 38-39, 2018.
[2] Y. Zhang, et al., “iRazor: 3-Transistor Current-based Error Detection and Correction
in an ARM Cortex-R4 Processor,” ISSCC, pp. 160-161, 2016.
[3] S. Kim, and M. Seok, “Variation-Tolerant, Ultra-Low-Voltage Microprocessor with
a Low-Overhead, Within-a-Cycle In-Situ Timing-Error Detection and Correction
Technique,” IEEE JSSC, vol. 50, no. 6, pp. 1478-1490, 2015.
[4] K. Bowman, et al, “A 16nm Auto-Calibrating Dynamically Adaptive Clock
Distribution for Maximizing Supply-Voltage-Droop Tolerance Across a Wide Operating
Range,” ISSCC, pp. 152-153, 2015.
[5] J. Constantin, et al., “DynOR: A 32-bit Microprocessor in 28 nm FD-SOI with Cycle-
by-Cycle Dynamic Clock Adjustment,” ESSCIRC, pp. 261-264, 2016.
[6] T. Jia, et al., “An Instruction Driven Adaptive Clock Phase Scaling with Timing
Encoding and Online Instruction Calibration for a Low Power Microprocessor,”
ESSCIRC, pp. 94-97, 2018.
[7] R. Balasubramanian, et al., “Enabling GPGPU Low-Level Hardware Explorations
with MIAOW: An Open-Source RTL Implementation of a GPGPU,” ACM TACO, vol.
12, no. 2, article 21, 2015.

978-1-5386-8531-0/19/$31.00 ©2019 IEEE

2019_Session_19.qxp_2019 12/7/18 4:22 PM Page 12

13DIGEST OF TECHNICAL PAPERS •

ISSCC 2019 / February 20, 2019 / 10:15 AM

Figure 19.4.1: Simulated dynamic timing slack at instruction level for a 10-
stage GPGPU architecture, and the adaptive clock challenges to exploit DTS for
the deep pipeline, multicore GPU architectures.

Figure 19.4.2: Block diagram of the implemented open-source GPU processor,
and the critical-path messenger design, which predicts that the CP will be
exercised one cycle in advance.

Figure 19.4.3: Design details of the proposed hierarchical clock-management
scheme.

Figure 19.4.5: Measured instruction-driven adaptive clock guided by the
messenger signals (waveform distortion due to impedance matching on PCB
board) and the performance improvement for eight kernel programs.

Figure 19.4.6: Benefit from the elastic pipeline clocking for machine-learning
applications, and the improvement with scaled voltage levels.

Figure 19.4.4: Elastic pipeline timing distribution across all stages to exploit
machine-learning error resilience.

19

2019_Session_19.qxp_2019 12/7/18 4:22 PM Page 13

• 2019 IEEE International Solid-State Circuits Conference 978-1-5386-8531-0/19/$31.00 ©2019 IEEE

ISSCC 2019 PAPER CONTINUATIONS

Figure 19.4.7: Die micrograph and design details.

2019_Session_19.qxp_2019 12/7/18 4:22 PM Page 14

