

A Differentiable Neural Computer for Logic
Reasoning with Scalable Near-Memory Computing

and Sparsity Based Enhancement
 Yuhao Ju

Electrical and Computer Engineering
Northwestern University

Evanston, IL, United States
Yuhaoju2017@u.northwestern.edu

Tianyu Jia
School of Integrated Circuits

Peking University
Beijing, China

tianyuj@pku.edu.cn

Shiyu Guo
Electrical and Computer Engineering

Northwestern University
Evanston, IL, United States

ShiyuGuo2021@u.northwestern.edu

Jie Gu
Electrical and Computer Engineering

Northwestern University
Evanston, IL, United States

jgu@northwestern.edu

Zixuan Liu
Electrical and Computer Engineering

Northwestern University
Evanston, IL, United States

ZixuanLiu2021@u.northwestern.edu

Abstract—Logic reasoning represents a new class of artificial
intelligence. This work presents the first hardware
implementation of the Differentiable Neural Computer
accelerator based on brain inspired “working memory” concept
for reasoning tasks. A special near-memory computing
architecture is developed achieving high scalability and over
90% utilization of computing resources. Sparsity based
enhancements such as zero skipping and data compression are
applied with 30% speedup of the computing latency. A 65nm
test chip was fabricated with demonstrations on a variety of
logic reasoning tasks showing 700X and 46X speedup compared
with CPU and GPU and up to 1.28TOPS/W energy efficiency.

I. INTRODUCTION
Despite the recent success in image and voice recognition
applications, a missing capability from the current deep
learning based artificial intelligence (AI) is realizing human
like logic reasoning. Fig. 1 shows several common cognitive
reasoning tasks such as deductive/abstract/sequential
reasoning, algorithm deduction, graphic traverse, etc. where
sequential relationships are being inferred from context of
graphs or texts. While exhaustive or sophisticated heuristic
search algorithms are traditionally used to solve such
problems, applying deep neural networks (DNN) to
reasoning tasks allows a differentiable solution, e.g. learning
through back-propagation without human intervention.
However, existing convolutional neural networks (CNN) or
long short-term memory (LSTM) architectures suffer from
limited memory space due to the entanglement of computing
and memory elements leading to poor performance in long
sequential reasoning tasks. Recently, models of differentiable
neural computer (DNC) or Memory-augmented Neural
Networks (MANN) were developed for reasoning tasks [1-
2]. As shown in Fig. 1, DNC incorporates content memory
operations through special “read/write heads” to infer logical
information from content memory contents overcoming
limited memory space issues of CNN or LSTM. Such a
capability resembles human brain’s “working memory”
which uses an “attention” based controller to access vocal or
visual memory of the brain [3]. This work implemented an
end-to-end logical inference processor based on DNC
algorithm with offline trained models [4]. As highlighted in
Fig. 1, the challenges of ASIC acceleration of DNC include

(1) large amount of memory access from the attention
mechanism with 10.6X more memory request than
conventional CNN, (2) highly sparse input and memory
contents and (3) complex model with eight operating phases
making the ASIC acceleration very challenging. In this work,
for the first time, an ASIC logic reasoning processor was
designed to accelerate cognitive reasoning tasks with
700X/46X improvement over commercial CPU/GPU. The
contributions include (1) A scalable near-memory
architecture is developed to overcome the memory bandwidth
challenges of the algorithm; (2) Special input zero skipping
and data compression techniques are applied to exploit
sparsity of the data; (3) Efficient transpose multiplication is
introduced to avoid large data exchange among computing
tiles; (4) Reconfigurable multiplier-accumulator units (MAC)
are designed to support the eight operating phases with above
90% processing element (PE) utilization rate for the
challenging mapping of the software model.

Context Sequential
Reasoning

Trajectory Prediction

Logic Reasoning Tasks
Deductive Reasoning

Mary took the milk.

John moved to the bedroom.
John got the football there.

Mary travelled to the hallway.

Where is milk?

Hallway

Sandra went to kitchen.

Algorithm Derivation
4, 8, 7, 1, 3

1, 3, 4, 7, 8

Sorting

GrandfatherGrandmotherGrandmotherGrandfather

UncleMotherFather

SisterBrother

NephewNieceSon Daughter

WifeHusbandCousin

Aunt

?

Human Cognitive
Intelligence

Human Brain with “Working Memory”

Controller

Instruction
Cache

Phonological Loop
(Verbal Memory)

Visuospatial Sketchpad
(Visual-spatial Memory)

Data
Cache

Von-Neumann CPU CNN

Content
MemoryLSTM Attention-based

Memory Controller

Central Controller
(Attentional Control System)

Computing Architecture Comparison

Brain Inspired

Challenges

Contributions
• First Demo. of End-to-end Reasoning Processor
‒ 700X/46X speedup over CPU/GPU
• Distributed Near-memory Architecture
‒ 90% utilization of PEs continuously
‒ 8X improvement of memory bandwidth
‒ Scalable architecture with memory space
• Sparsity and Compression Enhancement
‒ Input zero skipping with 37% performance gain
‒ Data compression with 28% performance gain
‒ Efficient transposed multiplication

• Multiple Memory Access
from Every PE Unit

→ Large Memory
Bandwidth Requirement

• Attention Mechanism
→ Frequent Scan of
Entire Memory

• High Sparsity

• Complex Software
Model / Staged
Operation

0

3

1.5

4.5

N
or

m
. M

em
or

y
Ba

nd
w

id
th

0.375
DNC

(this work)
CNN

4

10.6X

0

200

100

300

1
DNC

(this work)
CNN

200

200X

• Lack of “relationship” tracking
• Limited memory capacity
• Compute/Memory Entanglement

• Un-trainable

Differentiable
Neural Computer

(this work)
Attention

Region

Network

Fig. 1. Logic reasoning tasks with different computing architectures and
main contributions of this work.

II. ARCHITECTURE AND ALGORITHM
Fig. 2 shows the top-level DNC algorithm. A LSTM

serves as a central controller which preprocesses sequential
input data and manages the access of various memory banks
through memory controllers. The memory controllers include
“write head” and “read head” which realize an “attention” This work is supported in part by NSF grant CCF-2008906.

mechanism to select a region of “focus” from the large content
memory, similar to human brain’s memory retrieval
mechanism. For “read head”, the “attention” includes cosine
similarity and matrix/dot operations where the entire contents
of content memory are scanned for “related” information. A
special “attention memory” is used to keep the “linkage”
information, i.e. logical/sequential relationship among the
contents of content memory. For “write head”, a usage
memory is added to keep track of the content memory usage
for efficient recall, e.g. allocation of new memory for
incoming information. Each iteration passes through a
sequence of control/update/attention/recall/result operations
and after hundreds of iterations, the final result is obtained
from a fully connected network (FCN).

Output

Input
LSTM

PE Tasks

Write
Weights

Erase
Write Attention Calculation Read Weights Generation Read

Usage
LSTM FCN

Update Attention RecallControl Result

Memory Write Head

Memory Read Head2

Attention

Prev.
Weights

Memory Read Head1

Memory Usage
Tracking

Empty

Full

Not Full

Empty

Addr 0
Addr 1

Addr N

. . .

Allocation
Region

Cosine
SimilarityMemory

Content

Inputs

Usage
Gate Matrix

Mult.
Write

Weights

Differentiable Compute for Allocation

MAC:
Memory
Content

Inputs

Read
Weights

Differentiable Compute for
Attention

Attention
Region

AA A

Xt-1 Xt Xt+1

ht-1 ht ht+1

End-to-end Sequence with 10~500 Iterations

Matrix Add. :
Dot Mul. :

Cosine
Similarity:

LSTM
Controller

Attention-based Memory
Controller

Memory

Usage Mem

Content Mem

Weight Mem

Attention Mem

Address
Relationship

Attention Memory

Operation Phases in a Single Iteration

17.5% 10.2% 23.3% 40.4% 8.7%

. . .

Addr 0
Addr 1

Addr N

Cosine
Similarity

Matrix
Mult.

Algorithm Architecture

Fig. 2. Differentiable Neural Computer Algorithm.

DNC Chip Top-level Architecture

Tile0 Tile1 Tile2 Tile3

Tile4 Tile5 Tile6 Tile7

Scan
Chain

Clk Gen
CLK

Bus Top Control

LSTM/FCN
Weights

Mem
Attention

Mem

RF

Activation
Functions

Square Root
Softmax e^x

Content
Memory

PE Array

Attention
Matrix

Bus and Compression

Tile-level Architecture

PruningThreshold

Input
Mem

Top Control

Memory
Access

Controller

LSTM
Controller

Zero-skipping

Compression
Controller

Top Control
Registers

Bus
Controller

Bus
Accu.

Divider

Bus

Partial
Results

LSTM Recall FCN

Run time

17.5% 10.2% 23.3% 8.6%40.4%
Computing Sequence

M
AC

 U
til

iz
at

io
n

(%
)

PE Utilization Rate

LSTM FCNAttentionUpdate Recall
84

88

92

96

100

Dot Mul.
30.2%

Other
9.8%

>90% on Average

Arithmetic Breakdown

PE
43%

Others
2% Linkage

SRAM
18%

Input
SRAM

1%
RF8%

Weight
SRAM
22%

Bus
5%

Control
1%

Update Attention

MAC
38.9%

Add/Sub
21.1%

Power Breakdown

Fig. 3. DNC Chip Top-level Architecture, PE utilization, arithmetic and
power breakdown.

As shown in the arithmetic operation breakdown in Fig. 3,
besides extensive memory operation, DNC needs to support a
variety of operations using PEs including MAC operations
(38.9%) from LSTM and FCN, dot and vector multiplication
(30.2%) and matrix addition/subtraction (21.1%) for memory
similarity calculation. This leads to challenges in utilization of
PE and high memory bandwidth required from memory
banks, i.e. weight memory for LSTM/FCN, main content
memory, usage memory and attention memory. To overcome
the challenges, as shown in Fig. 3, a distributed near-memory
computing (NMC) architecture is developed where the chip is

divided into computational tiles connected by a global bus.
Each tile embeds a small PE array with 8 MACs, distributed
memories, a register file and special function modules, e.g.
SoftMax. For fitting into a small chip budget, 8 tiles were
implemented and can be proportionally scaled up. Fig. 3 also
shows the PE utilization of this design with over 90% on
average. Power breakdown is also shown in Fig. 3 with 43%
from PEs and 50% from memory.

III. NEAR-MEMORY COMPUTING ARRAY
Compute-Centric Systolic Array

• Long distance access to Mem banks
• High SRAM bandwidth requirement
• Difficult for multiple Mem banks
• Hard to scale up

• Local access to Mem banks
• Low SRAM bandwidth demand
• Easy to handle more Mem banks
• Easy to scale up

Usage and RF

At
te

nt
io

n
M

em

Content Mem

W
eights M

em

X

X

X

X

Bus

Tile0 Tile1

Tile2 Tile3

Near-memory Computing

4 8 16
Tile Numbers

0x

Near-memory Tiles Scalability

2x

4x
6x

1x
2.1x

4.5x

N
or

m
al

iz
ed

Sp

ee
du

p

Systolic Array
NMC

0N
or

m
al

iz
ed

Ba

nd
w

id
th

SRAM Bandwidth Demand

32 64 128
Computation Unit

1200

600
8x

Fig. 4. Comparison between conventional systolic array and near-memory
computing architectures.

Data Access Conflict
Cosine Similarity

MAC

Recall (Transposed)

...

Reconfigured Accumulation Flow

MAC MAC MAC MAC

MAC MAC MAC MAC

Cosine Similarity
Input Vector

MAC MAC MAC MAC

MAC MAC MAC MAC

Recall (Transposed)
Input Vector

Input VectorInput Vector

Tile-level Data Flow for Conflicting Similarity and Transpose
Matrix Calculation

w/ Reconfig.
Accu. Flow

0

3

1.5

4.5

N
or

m
. L

at
en

cy

30x

w/o Reconfig.
Accu. Flow

SRAMAccumulation

MAC

...

SRAMAccumulation

Hard to
Map

Accumulation Accumulation

Reconfigure

Benefit

Fig. 5. Reconfigured dataflow for tile-level conflicts.

Fig. 4 compares the proposed NMC architecture with a
conventional systolic array (SA). The required access from
different types of memory in DNC causes low efficiency, data
collision, large travel distance and poor scalability from SA.
NMC allows data to stay locally broadcasting only processed
data with 8X reduction of memory bandwidth. In addition,
NMC is scalable in throughput with computing tiles in
contrast with SA. Optimization of dataflow for different
computing phases, e.g. LSTM, attention, etc. are performed at
tile level. As shown in Fig. 5, a data mapping conflict between
similarity and recall operation with transposed matrix
calculation is observed. A reconfigurable flow is used to pass
accumulation results in different directions with significant
latency enhancement.

IV. ZERO-SKIPPING AND DATA COMPRESSION
Fig. 6 shows a reconfigurable MAC which was developed

to deal with a variety of operations including MAC, dot
multiplication and addition/subtraction. In addition, extensive
clock gating and a configurable hybrid precision of 8 bits
(LSTM) and 16 bits (Read/Write Head) are used for PE array
with minor accuracy loss (3~4% from 32 bits).

Multi-function Multi-precision PE
Multi-precision

+W
X

A
OpA

OpB

Multi-function PE

+W
X

A
OpA

OpB

Dot Multiplication

+W
X

A
OpA

OpB

MAC Operation

+W
X

A
OpA

OpB

Addition/Subtraction

Extensive Clock Gating

A1 A2 A3 A4X
8bit 8bit 8bit 8bit

A2*A4+

+
16bit * 16bit

Results

A2*A3
A1*A4

A1*A3

W

A

O
ther Logic

(Adder, etc.)

W_in

A_in

CLK

EN

Gating Cell

Accuracy of bAbI

70
75
80
85
90

Ac
cu

ra
cy

 (%
)

4 8 16 20 24 28 3212

LSTM Memory Head

Precision

X

MAC

+

Hybrid Precision
in this work

Fig. 6. PE Reconfiguration, multi-precision, clock-gating.

Input Zero-Skipping

A0, A1, 0, A3

W01,W02,W03,W04

W11,W12,W13,W14
W21,W22,W23,W24

W31,W32,W33,W34

Zero-Skipping Algorithm

Zero-Skipping Implementation

Zero-Skipping Benefit
For LSTM

N
or

m
al

ize
d

La
te

nc
y

W/O W/

Read/Write Heads Compression

N
or

m
al

iz
ed

 L
at

en
cy

N
or

m
al

iz
ed

 L
at

en
cyAttention Process Recall Process

Threshold Values

0.5
0.1
0.2
0.4
0.3
0.6
0.9
0.1

0.5
0
0

0.4
0

0.6
0.9
0

Threshold
Value

0.35 0.5
0.4
0.6
0.9

Compress

Head Vector Head Vector
Head

Vector

Threshold Values

Ac
cu

ra
cy

 (%
)

Average Accuracy Tolerance
For Q&A

Tile0 Tile1 Tile2 Tile3 Tile4 Tile5 Tile6 Tile7

Comparator Comparator Comparator ComparatorThreshold

Vector0 Vector1 Vector2 Vector3 Vector4 Vector5 Vector6 Vector7

0-Detecor
BUS

Head Compression Implementation

70

90
85
80
75

0 0.15 0.3

0 0.1 0.2
0

1

2

3

28%

0 0.05 0.10

4

8

19%

Threshold Values

Address-record

32767

0

10

5
37%Attention

Recall

Input Memory

Decoder
0, 0, 1, 0

Address = 2
Weights

Mem

One-hot

Xt = 127
(8bit)

W21,W22,W23,W24

FC

0, 0, 1, 0

W01,W02,W03,W04

W11,W12,W13,W14

W21,W22,W23,W24

W31,W32,W33,W34

One-hot

Sigmoid tanh

XCt-1

Sigmoid

X
+

Sigmoid

tanh

X

ht-1 ht

Ct

A A

LSTM
...

Length-record

Tile

Compressed Head 0

Xt-1 Xt+1

Selected

Fig. 7. Data compression and zero-skipping techniques used in this work
leveraging sparsity of DNC accelerator.

Fig. 7 shows the sparsity and compression techniques used
in this work. In write/read head operations, non-zero weights
are compressed in a global bus before sending to each
computing tile with preset threshold to prune the write/read
weights to enhance sparsity. The data compression technique
results in 28% speedup for the attention calculation with
negligible overhead and minimal accuracy loss. Due to high
sparsity of incoming data stream, input zero-skipping with
associated detection and decoder logic as shown in Fig. 7 is
also implemented to skip large amount of related MAC
operations and weight loading in LSTM for frequent one-hot
inputs. As a result, 96% of FCN operations or 37% of total
LSTM operations are being bypassed.
V. MEASUREMENT RESULTS AND DEMONSTRATION CASES

A 65nm test chip was fabricated running at 350MHz at
nominal 1V. Different reasoning tasks using DNC models
trained offline was sent into the chip for evaluation with end-
to-end operations. Fig. 8 to 10 show detailed descriptions of
four examples of reasoning tasks implemented in the test chip
including copy task, finding family relationship based on
family tree, graph traversal task for traversing London
underground stations within a given number of steps and
context-based Q&A using bAbI database [5]. Attention

mechanism from attention memory is highlighted to show the
sequential relationship discovered by the chip. Performance
comparison with CPU and GPU and accuracy comparison
with floating point model are also shown.

As in the copy task in Fig. 8, DNC receives a sequence of
vectors as input data and generate the same vector pattern in
as the output. The attention memory is used to store the
relationship, i.e. the sequence, between the different addresses
of the content memory. For example, the large value in the
coordinate (1,2) of the attention memory represents the
address 1 and 2 (blue circle) are highly related in relationship
enabling “copying” the sequence of the vectors. As shown in
Fig. 9 for the family tree example, relationships for immediate
family, i.e. father, mother, son, daughter are encoded as
vectors sent into DNC to build the family tree graph. The
attention memory represents family relationship. As an
example, “Amy, David, Father” and “Mary, Amy, Mother”
are inputs that include family relationships to be recorded by
the attention memory. By performing inference, DNC can
generate any relationship between 2 people in the family tree.
In this task, the DNC accelerator can achieve about 693X
speedup than CPU (Ryzen 5 2600X) with 4% accuracy loss.

128

0
8-bit

Input
vectors

output
vectors

Copied Vector

Time

Write
Head

Read
Head

0

8

2
4
6

M
em

ory Location

0

8

2
4
6

M
em

ory Location

Copied Sequence

Access same location Same location Sequence

32767

0
16-bit

Attention
Memory

Trained Sequence in copy task: memory 3 is
followed by 4 during reading

32767

0

Copy Task: DNC Trained to Copy and Paste Input

Fig. 8. Detailed demonstration of copy task.

Family Tree Task

...

Input1:
(Amy, David, Father)

Amy
David

Input2:
(Mary, Amy, Mother)

Time

Answer:
Maternal

Great Uncle

Amy
David

Mary

Step1: Input Step15: Final Answer

Graphic
Building

External
Memory

Attention
Memory

(1,6)

(6,1)

Re
la

te
d

Fe
at

ur
esFeature1

Feature2

Feature1

FCN

CPU

Performance

This WorkGPU
0.001

0.01
0.1

1
10

100

La
te

nc
y(

s)

FP This Work
0

25
50
75

100

Ac
cu

ra
cy

(%
)

Accuracy
80.2 76.4

Step2: Input

...

...
Feature1

Feature 3

Feature2.....................

?

?

0

32767

16-bit

27.1
1.82

0.039

Find relation
between input

features of 1 and 6

Fig. 9. Detailed demonstration of family tree task.

Finding the logic relationship between two objects in the
sequential context or graph is another important application of
DNC. As the Q&A task shown in Fig. 10, DNC receives the
text contents and is able to give the answer about the questions

on the relationship of the objects. The speedup compared with
CPU is around 709X. The London underground traversal task
is also shown in Fig. 10, DNC can find the traversal path back
to the starting station after receiving the information from
London underground map in advance. The speedup compared
with CPU is 697X with about 4% accuracy degradation.

CPU This WorkGPU FP This Work0
25
50
75

100

Ac
cu

ra
cy

 (%
) 88.1 84.1

87.9 83.3

0.001
0.01

0.1
1

10
100

La
te

nc
y

(s
)

Context Q & A Task
Mary took the milk.

John moved to the bedroom.
John got the football there.

Mary travelled to the hallway.

Where is milk?

Hallway

Sandra went to kitchen.

Attention
Memory

35.69
2.34

0.05

65.57
4.38

0.091

Bond
Street

?
Traverse from Bond Street

within 7 steps

Bond
Street

AccuracyPerformance

0.001
0.01

0.1
1

10
100

La
te

nc
y

(s
)

Performance

CPU This WorkGPU
0

25
50
75

100

Ac
cu

ra
cy

 (%
)

Accuracy

FP This Work

London Underground Traverse

Fig. 10. Details of Q&A task and London underground traversal task.

In total, eight different logic reasoning tasks spanning
across diversified jobs including sorting, copying, repeated
copy, recall, sort, context Q&A, graphic traversal and shortest
path, were tested to verify the functionality and performance
against commercial CPU and GPU. Fig. 11 shows the
measurement results on power and latency. An average of
above 90% utilization has been observed among computing
phases. The test chip achieved 700X and 46X speedup over
CPU and GPU processors across the eight test cases. End-to-
end speedup of 30% was also achieved from the applied
sparsity enhancement techniques. The comparison table was
shown in Fig. 12. As this work is the first implementation of
a reasoning processor, comparison was made mainly to prior
DNN accelerators specially for LSTM/FCN in similar
technology. A maximum efficiency of 1.28TOPS/W is
observed for 8-bit LSTM. Compared with a prior simulation-
based work using a related but different computation model of
MANN [6], a 21X improvement of efficiency is observed
from this work. Fig. 13 shows the chip micrograph.

VI. CONCLUSION
A 65nm test chip using Differentiable Neural Computer

model was implemented to perform logic reasoning tasks for
the first time. A special NMC architecture was developed
rendering lower requirement of SRAM bandwidth with better
scalability. Input zero-skipping and data compression
techniques are applied to achieve 28% reduction on attention
calculation and 37% reduction of LSTM operations. Eight
different logic reasoning tasks are demonstrated using the test
chip. 700X and 46X speedup compared with commercial CPU
and GPU are observed on the logic reasoning tasks with a
power efficiency of up to 1.28TOPS/W and over 90%
utilization of PE units in all the eight computing phases.

REFERENCES
[1] J. Rae, et al., “Scaling Memory-Augmented Neural Networks with

Sparse Reads and Writes,” NIPS, 2016.
[2] T. Munkhdalai, et al., “Meta Networks”, ICML, 2017.
[3] A. Baddeley, et al., “Working Memory: Theories, Models, and

Controversies,” Annual Review of Psychology, Jan. 2012.
[4] Graves, A., Wayne, G., Reynolds, M. et al., “Hybrid computing using

a neural network with dynamic ex-ternal memory,” Nature, 2016.
[5] Facebook bAbI, https://research.fb.com/downloads/babi
[6] J. Stevens, et al., “Manna: An Accelerator for Memory-Augmented

Neural Networks,” MICRO, pp. 794–806, 2019.
[7] D. Shin, J. Lee, J. Lee and H. -J. Yoo, “14.2 DNPU: An 8.1TOPS/W

reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” ISSCC, 2017.

[8] Y. -H. Chen, T. Krishna, J. Emer and V. Sze, "14.5 Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks," ISSCC, 2016.

Power Efficiency

Ef
fic

ie
nc

y
(T

O
PS

/W
)

Voltage (V)

Fr
eq

ue
nc

y
(M

H
z)

Po
w

er
 (m

W
)

Power Tracing and PE Utilization

Write
Attention

Update Read

0

250
200
150
100
50

Time (ms)
0 1.60.80.4 1.2

1000x

100x

10x

1x

100

85

90

95

U
til

iz
at

io
n

(%
)

Power
PE Utilization

0

100

200

300

400

0

0.4

0.8

1.2

1.6

0

1.6
1.2
0.8
0.4

0

400
300
200
100

0.4 1.10.80.6 1.0

N
or

m
al

iz
ed

Sp

ee
d

(lo
g1

0)

1 1 1 1 1 1 1 1
3.2 3.2 3.2 3.3

14.7 14.9 15.2 15.2

652 645 648 672 709 693 697 697

Copy RptCopy Recall Sort Context
Q&A

Family
Tree

Traversal Shortest
Path

Speed (Normalized with CPU)

GPU(GTX 1060)CPU (Ryzen 5 2600X) This Work

Sequential Reasoning w/ bAbI Database

8 bit

(Only single
iteration shown)

Power Frequency

46x201x 46x

LSTM FCN

Sparsity Benefits at End-to-end

N
or

m
. L

at
en

cy

0

6

12

Int MANN +Zero-
Skipping

+Write
Compression

+Read
Compression

30%

0

2

4

6

8

10

12

Fig. 11. Measurement results

TABLE I. COMPARISON TABLE
MICRO2019[6] DNPU[7] Eyeriss[8] This Work

Core MANN CNN,FC,LSTM CNN DNC
Num. of PE 3*256 768(16bit) 168 64
Process(nm) 15nm Nangate Open

Cell Library 65nm 65nm 65nm

Area(mm2) 40 16 12.25 7.75
Supply Vdd - 1.1V 1.0V 1.0V

Power 16W (TDP) 279mW 278mW 230mW
Freq. (MHz) 500 200 200 350

Data
Type FP32 INT1~16 INT16 INT8(LSTM)

INT16(Read/Write Head)
Memory 39.8MB - 181KB 200KB

Power
Efficiency

18GOPS/W
(Simulated Results)

3.9TOPS/W (4b)
1.0TOPS/W (16b)

0.241TOPS/W
(1V,16b)

389.6GOPS/W (1V,8b)
1.28GOPS/W (0.5V,8b)

Fig. 12. Comparison Table with prior work.

Tile1 Tile2 Tile3Tile0

Tile1 Tile2 Tile3Tile0

Bus TOP Control

In
pu

t M
em

DCO

Technology 65nm CMOS
Area 7.75mm2

Power 230mW
PE Number 64

Tile Number 8
PE/Tile 8

Bit Precision INT8, INT16
Frequency 350MHz
Supply Vdd 0.5~1V

SRAM 200KB
Efficiency
(TOPS/W)

0.39(1V, 8bit)
1.28(0.5V, 8bit)

Fig. 13. Micrograph of the test chip.

	I. Introduction
	II. Architecture and Algorithm
	III. Near-memory Computing Array
	IV. Zero-skipping and Data Compression
	V. Measurement Results and demonstration cases
	VI. Conclusion
	References

