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Abstract—Logic reasoning represents a new class of artificial 
intelligence. This work presents the first hardware 
implementation of the Differentiable Neural Computer 
accelerator based on brain inspired “working memory” concept 
for reasoning tasks. A special near-memory computing 
architecture is developed achieving high scalability and over 
90% utilization of computing resources. Sparsity based 
enhancements such as zero skipping and data compression are 
applied with 30% speedup of the computing latency.  A 65nm 
test chip was fabricated with demonstrations on a variety of 
logic reasoning tasks showing 700X and 46X speedup compared 
with CPU and GPU and up to 1.28TOPS/W energy efficiency. 

I. INTRODUCTION 
Despite the recent success in image and voice recognition 
applications, a missing capability from the current deep 
learning based artificial intelligence (AI) is realizing human 
like logic reasoning. Fig. 1 shows several common cognitive 
reasoning tasks such as deductive/abstract/sequential 
reasoning, algorithm deduction, graphic traverse, etc. where 
sequential relationships are being inferred from context of 
graphs or texts.  While exhaustive or sophisticated heuristic 
search algorithms are traditionally used to solve such 
problems, applying deep neural networks (DNN) to 
reasoning tasks allows a differentiable solution, e.g. learning 
through back-propagation without human intervention. 
However, existing convolutional neural networks (CNN) or 
long short-term memory (LSTM) architectures suffer from 
limited memory space due to the entanglement of computing 
and memory elements leading to poor performance in long 
sequential reasoning tasks. Recently, models of differentiable 
neural computer (DNC) or Memory-augmented Neural 
Networks (MANN) were developed for reasoning tasks [1-
2]. As shown in Fig. 1, DNC incorporates content memory 
operations through special “read/write heads” to infer logical 
information from content memory contents overcoming 
limited memory space issues of CNN or LSTM. Such a 
capability resembles human brain’s “working memory” 
which uses an “attention” based controller to access vocal or 
visual memory of the brain [3]. This work implemented an 
end-to-end logical inference processor based on DNC 
algorithm with offline trained models [4]. As highlighted in 
Fig. 1, the challenges of ASIC acceleration of DNC include 

(1) large amount of memory access from the attention 
mechanism with 10.6X more memory request than 
conventional CNN, (2) highly sparse input and memory 
contents and (3) complex model with eight operating phases 
making the ASIC acceleration very challenging. In this work, 
for the first time, an ASIC logic reasoning processor was 
designed to accelerate cognitive reasoning tasks with 
700X/46X improvement over commercial CPU/GPU. The 
contributions include (1) A scalable near-memory 
architecture is developed to overcome the memory bandwidth 
challenges of the algorithm; (2) Special input zero skipping 
and data compression techniques are applied to exploit 
sparsity of the data; (3) Efficient transpose multiplication is 
introduced to avoid large data exchange among computing 
tiles; (4) Reconfigurable multiplier-accumulator units (MAC) 
are designed to support the eight operating phases with above 
90% processing element (PE) utilization rate for the 
challenging mapping of the software model.  
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Fig. 1. Logic reasoning tasks with different computing architectures and 
main contributions of this work. 

II. ARCHITECTURE AND ALGORITHM 
Fig. 2 shows the top-level DNC algorithm. A LSTM 

serves as a central controller which preprocesses sequential 
input data and manages the access of various memory banks 
through memory controllers. The memory controllers include 
“write head” and “read head” which realize an “attention”     This work is supported in part by NSF grant CCF-2008906. 



 

 

mechanism to select a region of “focus” from the large content 
memory, similar to human brain’s memory retrieval 
mechanism. For “read head”, the “attention” includes cosine 
similarity and matrix/dot operations where the entire contents 
of content memory are scanned for “related” information. A 
special “attention memory” is used to keep the “linkage” 
information, i.e. logical/sequential relationship among the 
contents of content memory. For “write head”, a usage 
memory is added to keep track of the content memory usage 
for efficient recall, e.g. allocation of new memory for 
incoming information. Each iteration passes through a 
sequence of control/update/attention/recall/result operations 
and after hundreds of iterations, the final result is obtained 
from a fully connected network (FCN).  
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Fig. 2. Differentiable Neural Computer Algorithm. 
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Fig. 3. DNC Chip Top-level Architecture, PE utilization, arithmetic and 
power breakdown.  

As shown in the arithmetic operation breakdown in Fig. 3, 
besides extensive memory operation, DNC needs to support a 
variety of operations using PEs including MAC operations 
(38.9%) from LSTM and FCN, dot and vector multiplication 
(30.2%) and matrix addition/subtraction (21.1%) for memory 
similarity calculation. This leads to challenges in utilization of 
PE and high memory bandwidth required from memory 
banks, i.e. weight memory for LSTM/FCN, main content 
memory, usage memory and attention memory. To overcome 
the challenges, as shown in Fig. 3, a distributed near-memory 
computing (NMC) architecture is developed where the chip is 

divided into computational tiles connected by a global bus. 
Each tile embeds a small PE array with 8 MACs, distributed 
memories, a register file and special function modules, e.g. 
SoftMax. For fitting into a small chip budget, 8 tiles were 
implemented and can be proportionally scaled up. Fig. 3 also 
shows the PE utilization of this design with over 90% on 
average. Power breakdown is also shown in Fig. 3 with 43% 
from PEs and 50% from memory.  

III. NEAR-MEMORY COMPUTING ARRAY 
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Fig. 4. Comparison between conventional systolic array and near-memory 
computing architectures. 
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Fig. 5. Reconfigured dataflow for tile-level conflicts. 

Fig. 4 compares the proposed NMC architecture with a 
conventional systolic array (SA). The required access from 
different types of memory in DNC causes low efficiency, data 
collision, large travel distance and poor scalability from SA. 
NMC allows data to stay locally broadcasting only processed 
data with 8X reduction of memory bandwidth. In addition, 
NMC is scalable in throughput with computing tiles in 
contrast with SA. Optimization of dataflow for different 
computing phases, e.g. LSTM, attention, etc. are performed at 
tile level. As shown in Fig. 5, a data mapping conflict between 
similarity and recall operation with transposed matrix 
calculation is observed. A reconfigurable flow is used to pass 
accumulation results in different directions with significant 
latency enhancement.  



 

 

IV. ZERO-SKIPPING AND DATA COMPRESSION 
Fig. 6 shows a reconfigurable MAC which was developed 

to deal with a variety of operations including MAC, dot 
multiplication and addition/subtraction. In addition, extensive 
clock gating and a configurable hybrid precision of 8 bits 
(LSTM) and 16 bits (Read/Write Head) are used for PE array 
with minor accuracy loss (3~4% from 32 bits).  
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Fig. 6. PE Reconfiguration, multi-precision, clock-gating. 
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Fig. 7. Data compression and zero-skipping techniques used in this work 
leveraging sparsity of DNC accelerator. 

Fig. 7 shows the sparsity and compression techniques used 
in this work. In write/read head operations, non-zero weights 
are compressed in a global bus before sending to each 
computing tile with preset threshold to prune the write/read 
weights to enhance sparsity. The data compression technique 
results in 28% speedup for the attention calculation with 
negligible overhead and minimal accuracy loss. Due to high 
sparsity of incoming data stream, input zero-skipping with 
associated detection and decoder logic as shown in Fig. 7 is 
also implemented to skip large amount of related MAC 
operations and weight loading in LSTM for frequent one-hot 
inputs. As a result, 96% of FCN operations or 37% of total 
LSTM operations are being bypassed. 
V. MEASUREMENT RESULTS AND DEMONSTRATION CASES 

A 65nm test chip was fabricated running at 350MHz at 
nominal 1V. Different reasoning tasks using DNC models 
trained offline was sent into the chip for evaluation with end-
to-end operations.  Fig. 8 to 10 show detailed descriptions of 
four examples of reasoning tasks implemented in the test chip 
including copy task, finding family relationship based on 
family tree, graph traversal task for traversing London 
underground stations within a given number of steps and 
context-based Q&A using bAbI database [5]. Attention 

mechanism from attention memory is highlighted to show the 
sequential relationship discovered by the chip. Performance 
comparison with CPU and GPU and accuracy comparison 
with floating point model are also shown.  

As in the copy task in Fig. 8, DNC receives a sequence of 
vectors as input data and generate the same vector pattern in 
as the output. The attention memory is used to store the 
relationship, i.e. the sequence, between the different addresses 
of the content memory. For example, the large value in the 
coordinate (1,2) of the attention memory represents the 
address 1 and 2 (blue circle) are highly related in relationship 
enabling “copying” the sequence of the vectors.  As shown in 
Fig. 9 for the family tree example, relationships for immediate 
family, i.e. father, mother, son, daughter are encoded as 
vectors sent into DNC to build the family tree graph. The 
attention memory represents family relationship. As an 
example, “Amy, David, Father” and “Mary, Amy, Mother” 
are inputs that include family relationships to be recorded by 
the attention memory. By performing inference, DNC can 
generate any relationship between 2 people in the family tree. 
In this task, the DNC accelerator can achieve about 693X 
speedup than CPU (Ryzen 5 2600X) with 4% accuracy loss. 
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Fig. 8. Detailed demonstration of copy task. 
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Fig. 9. Detailed demonstration of family tree task. 

Finding the logic relationship between two objects in the 
sequential context or graph is another important application of 
DNC. As the Q&A task shown in Fig. 10, DNC receives the 
text contents and is able to give the answer about the questions 



 

 

on the relationship of the objects. The speedup compared with 
CPU is around 709X. The London underground traversal task 
is also shown in Fig. 10, DNC can find the traversal path back 
to the starting station after receiving the information from 
London underground map in advance. The speedup compared 
with CPU is 697X with about 4% accuracy degradation. 
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Fig. 10. Details of Q&A task and London underground traversal task. 

In total, eight different logic reasoning tasks spanning 
across diversified jobs including sorting, copying, repeated 
copy, recall, sort, context Q&A, graphic traversal and shortest 
path, were tested to verify the functionality and performance 
against commercial CPU and GPU. Fig. 11 shows the 
measurement results on power and latency. An average of 
above 90% utilization has been observed among computing 
phases. The test chip achieved 700X and 46X speedup over 
CPU and GPU processors across the eight test cases. End-to-
end speedup of 30% was also achieved from the applied 
sparsity enhancement techniques. The comparison table was 
shown in Fig. 12. As this work is the first implementation of 
a reasoning processor, comparison was made mainly to prior 
DNN accelerators specially for LSTM/FCN in similar 
technology. A maximum efficiency of 1.28TOPS/W is 
observed for 8-bit LSTM. Compared with a prior simulation-
based work using a related but different computation model of 
MANN [6], a 21X improvement of efficiency is observed 
from this work. Fig. 13 shows the chip micrograph. 

VI. CONCLUSION 
A 65nm test chip using Differentiable Neural Computer 

model was implemented to perform logic reasoning tasks for 
the first time. A special NMC architecture was developed 
rendering lower requirement of SRAM bandwidth with better 
scalability. Input zero-skipping and data compression 
techniques are applied to achieve 28% reduction on attention 
calculation and 37% reduction of LSTM operations. Eight 
different logic reasoning tasks are demonstrated using the test 
chip. 700X and 46X speedup compared with commercial CPU 
and GPU are observed on the logic reasoning tasks with a 
power efficiency of up to 1.28TOPS/W and over 90% 
utilization of PE units in all the eight computing phases. 
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Fig. 11. Measurement results 

TABLE I.  COMPARISON TABLE 
MICRO2019[6] DNPU[7] Eyeriss[8] This Work

Core MANN CNN,FC,LSTM CNN DNC
Num. of PE 3*256 768(16bit) 168 64
Process(nm) 15nm Nangate Open 

Cell Library 65nm 65nm 65nm

Area(mm2) 40 16 12.25 7.75
Supply Vdd - 1.1V 1.0V 1.0V

Power 16W (TDP) 279mW 278mW 230mW
Freq. (MHz) 500 200 200 350

Data 
Type FP32 INT1~16 INT16 INT8(LSTM) 

INT16(Read/Write Head)
Memory 39.8MB - 181KB 200KB

Power
Efficiency

18GOPS/W
(Simulated Results)

3.9TOPS/W (4b)
1.0TOPS/W (16b)

0.241TOPS/W 
(1V,16b)

389.6GOPS/W (1V,8b)
1.28GOPS/W (0.5V,8b)  

Fig. 12. Comparison Table with prior work. 

Tile1 Tile2 Tile3Tile0

Tile1 Tile2 Tile3Tile0

Bus TOP Control

In
pu

t M
em

DCO

Technology 65nm CMOS
Area 7.75mm2

Power 230mW
PE Number 64

Tile Number 8
PE/Tile 8

Bit Precision INT8, INT16
Frequency 350MHz
Supply Vdd 0.5~1V

SRAM 200KB
Efficiency
(TOPS/W)

0.39(1V, 8bit)
1.28(0.5V, 8bit)

 
Fig. 13. Micrograph of the test chip. 
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