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Abstract

This work presents a general-purpose compute-in-memory
(GPCIM) processor combining DNN operations and vector
CPU. Utilizing special reconfigurability, dataflow and
instruction set, the 65nm test chip demonstrates a 28.5
TOPS/W DNN macro efficiency and a best-in-class peak CPU
efficiency of 802GOPS/W. Benefit from a data locality flow,
37% to 55% end-to-end latency improvement on Al-related
applications is achieved by eliminating inter-core data transfer.

Introduction

While tremendous progresses have been made for compute-
in-memory (CIM) techniques, for end-to-end operations of Al-
related tasks, a general-purpose computing unit, e.g. CPU, is
not only mandatory but also often dominate the total latency
due to significant pre/post-processing, data
movement/alignment and versatile non-MAC tasks. As shown
in Fig.1, the conventional architecture which engages the CPU
core, ASIC/CIM accelerator, and a DMA engine for data
transfer suffer from processor stall and underutilization issues.
DNN computing often takes only 12%-50% of total run time
leaving performance bottlenecked by CPU processing and data
transfer [1]. For instance, 83% of run time was spent by CPU
for data movement and preparation from the recent AR/VR
SoC [2]. Unfortunately, the recent CIM developments do not
address the need for improvements from CPU related
processing and data transfer. In this work, we propose a unified
general purpose CIM (GPCIM) architecture which obtain high
efficiency for both DNN and vector instruction-based CPU.
The highlights of this work include: (1) A unified digital CIM
architecture has been developed for both vector CPU and DNN
operations; (2) Best-in-class energy efficiency has been
achieved on the vector CPU by exploiting the simpler pipeline,
removal of cache access and data locality of CIM architecture;
(3) To overcome the inter-core data transfer overhead in
conventional architecture, special dataflow and dedicated
instruction set are constructed for seamless data sharing
between CPU and DNN operations rendering significant
improvement on end-to-end performance. A 65nm test chip is
developed to demonstrate the state-of-the-art energy efficiency
from the GPCIM processor for both DNN (23.5TOPS/W) and
CPU (802GOPS/W) tasks in end-to-end real-time applications.

GPCIM Design and Instruction Set

Fig. 2 shows the CIM macro which contains Data Cache
Activation Memory (DAMEM) and Data Cache Output
Memory (DOMEM) with the central computing units (CCU).
The DAMEM is a 32bit 9T bitcell array which supports both
regular SRAM function and 1b multiplication for DNN by
appending a 3T NAND gate to the 6T SRAM. DOMEM is an
8T bitcell array with 2 bitlines which performs 2 read and 1
write within one clock cycle. Extra instruction cache and
weight SRAM are added to support DNN and CPU functions.
As shown in Fig. 2, in DNN mode, the CIM macro uses
DAMEM as input memory for digital CIM MAC operation
with stationary input and DOMEM as output memory. In CPU
mode, DAMEM is used as a data cache (Dcache) and DOMEM
acts as both register file (RF) and Dcache. Data movement

between Dcache, RF and pipeline stages in traditional CPU has
been significantly reduced or eliminated in GPCIM design. As
shown in Fig. 2, a five-phase single-cycle operation including
write-back, pre/dis-charge, latch update and vector execution,
is performed for the CPU/DNN operation from DOMEM. Fig.
3 highlights the significant power benefits of GPCIM by
exploiting CIM’s concise dataflow in comparison with an
equivalent digital counterpart of vector RISC-V pipeline core
with L1 cache and RF. Shorter 2-stage pipeline in GPCIM
leads to reduced flip-flops by 7.6X. Vector RF is eliminated by
integrating it into CIM Dcache. ALUs are merged into CIM
macro eliminating data cache access with 1.9X cache power
saving and 1.3X ALU power saving. Certain pipeline logic in
RISC-V pipeline core such as forwarding is also removed with
2.1X logic power saving. A 4.62X total power reduction is
achieved for GPCIM. Fig. 4 illustrates logic reuse in CCU
inside CIM macro. In the DNN mode, the CCU is configured
as four adder trees to perform 8bit MAC utilizing the 1b results
from DAMEM. In CPU mode, logics are reused to support
different instructions. Extra logic beyond adder trees is also
added for complete ALU functions. Input and clock gating are
performed on unused logic in different modes. A customized
32b instruction set architecture (ISA) is designed to support
integer vector CPU function. As in Fig. 5, 5b opcode defines
different instruction types with the first 3 bits designated for
locations of the operands and results. Special instructions such
as “MVCSR”, “SWITCH” and “PCS”, are added to configure
the control and status registers (CSR) for smooth mode
switching between CPU and CNN. Reconfiguration costs 8.8%
area overhead on CIM macro to support vector CPU operations.
Fig. 6 shows a data movement scheme facilitating end-to-end
operation for both CPU and CNN. After vector CPU operation
for preprocessing, the CPU stores the CNN input data to
DAMEM so that GPCIM can directly process the first layer of
CNN without any data transfer in conventional architecture.
After CNN processing, the data preparation such as data
alignment, batch normalization and padding between different
layers are performed seamlessly by CPU by configuring
DOMEM to Dcache avoiding further data movement. As
shown in Fig.6, GPCIM achieves 52~56% end-to-end latency
improvement for CNN tasks due to elimination of data transfer
and parallel vector processing compared with Gemmini [1]
using a scalar RISC-V CPU and an accelerator.
Measurement Results and End-to-end Test Case

A 65nm test chip was fabricated with a nominal supply of
1.0V. As shown in Fig.7, for DNN mode, GPCIM achieves a
7.62~17.8TOPS/W 8-bit system energy efficiency and a
14.8~28.5TOPS/W macro energy efficiency matching prior
CIM CNN performance [3, 4]. GPCIM achieves the highest
CPU efficiency, more than 17.8X improvement compared with
prior 4 vector RISC-V CPU and 3 scalar RSIC-V CPU despite
a lower throughput due to slower operating frequency and less
vectors (scalable) being implemented [7-10]. A comparison
table with prior CIM and RISC-V CPUs is also shown in Fig.
7. Compared with a prior instruction supported CIM [5], this
CIM achieves 7.3X efficiency improvement for 32b MUL



instruction. Compared with a recent reconfigurable
ASIC+CPU digital design [6], GPCIM achieves 10X higher
DNN efficiency and 118X higher CPU efficiency. Fig. 8
further demonstrates a detailed end-to-end case study from
GPCIM using a popular CNN-based Simultaneous
Localization and Mapping (SLAM) task for mobile robots.
76% operations including preprocessing (camera pose
estimation, depth refinement) and post-processing (key-frame
creation, graph pose optimization) need to be performed by
CPU due to the non-CNN operations such as division and
exponentiation which are challenging for conventional
CIM+CPU architecture. For the SLAM task, the GPCIM
achieves 35X CNN efficiency improvement, 7.9X CPU

efficiency improvement, 37% end-to-end latency improvement,

compared with Gemmini [1].
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Application: CNN-SLAM Heterogeneofus ASIC/CIM SoC vs GPCIM
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Fig. 8 A detailed case study on the SLAM application from GPCIM.
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