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Abstract 

This work presents a general-purpose compute-in-memory 

(GPCIM) processor combining DNN operations and vector 

CPU. Utilizing special reconfigurability, dataflow and 

instruction set, the 65nm test chip demonstrates a 28.5 

TOPS/W DNN macro efficiency and a best-in-class peak CPU 

efficiency of 802GOPS/W. Benefit from a data locality flow, 

37% to 55% end-to-end latency improvement on AI-related 

applications is achieved by eliminating inter-core data transfer.   

Introduction 

While tremendous progresses have been made for compute-

in-memory (CIM) techniques, for end-to-end operations of AI-

related tasks, a general-purpose computing unit, e.g. CPU, is 

not only mandatory but also often dominate the total latency 

due to significant pre/post-processing, data 

movement/alignment and versatile non-MAC tasks. As shown 

in Fig.1, the conventional architecture which engages the CPU 

core, ASIC/CIM accelerator, and a DMA engine for data 

transfer suffer from processor stall and underutilization issues.  

DNN computing often takes only 12%-50% of total run time 

leaving performance bottlenecked by CPU processing and data 

transfer [1].  For instance, 83% of run time was spent by CPU 

for data movement and preparation from the recent AR/VR 

SoC [2]. Unfortunately, the recent CIM developments do not 

address the need for improvements from CPU related 

processing and data transfer. In this work, we propose a unified 

general purpose CIM (GPCIM) architecture which obtain high 

efficiency for both DNN and vector instruction-based CPU. 

The highlights of this work include: (1) A unified digital CIM 

architecture has been developed for both vector CPU and DNN 

operations; (2) Best-in-class energy efficiency has been 

achieved on the vector CPU by exploiting the simpler pipeline, 

removal of cache access and data locality of CIM architecture; 

(3) To overcome the inter-core data transfer overhead in 

conventional architecture, special dataflow and dedicated 

instruction set are constructed for seamless data sharing 

between CPU and DNN operations rendering significant 

improvement on end-to-end performance. A 65nm test chip is 

developed to demonstrate the state-of-the-art energy efficiency 

from the GPCIM processor for both DNN (23.5TOPS/W) and 

CPU (802GOPS/W) tasks in end-to-end real-time applications. 

GPCIM Design and Instruction Set 

Fig. 2 shows the CIM macro which contains Data Cache 

Activation Memory (DAMEM) and Data Cache Output 

Memory (DOMEM) with the central computing units (CCU). 

The DAMEM is a 32bit 9T bitcell array which supports both 

regular SRAM function and 1b multiplication for DNN by 

appending a 3T NAND gate to the 6T SRAM. DOMEM is an 

8T bitcell array with 2 bitlines which performs 2 read and 1 

write within one clock cycle. Extra instruction cache and 

weight SRAM are added to support DNN and CPU functions. 

As shown in Fig. 2, in DNN mode, the CIM macro uses 

DAMEM as input memory for digital CIM MAC operation 

with stationary input and DOMEM as output memory. In CPU 

mode, DAMEM is used as a data cache (Dcache) and DOMEM 

acts as both register file (RF) and Dcache. Data movement 

between Dcache, RF and pipeline stages in traditional CPU has 

been significantly reduced or eliminated in GPCIM design. As 

shown in Fig. 2, a five-phase single-cycle operation including 

write-back, pre/dis-charge, latch update and vector execution, 

is performed for the CPU/DNN operation from DOMEM. Fig. 

3 highlights the significant power benefits of GPCIM by 

exploiting CIM’s concise dataflow in comparison with an 

equivalent digital counterpart of vector RISC-V pipeline core 

with L1 cache and RF. Shorter 2-stage pipeline in GPCIM 

leads to reduced flip-flops by 7.6X. Vector RF is eliminated by 

integrating it into CIM Dcache. ALUs are merged into CIM 

macro eliminating data cache access with 1.9X cache power 

saving and 1.3X ALU power saving. Certain pipeline logic in 

RISC-V pipeline core such as forwarding is also removed with 

2.1X logic power saving. A 4.62X total power reduction is 

achieved for GPCIM. Fig. 4 illustrates logic reuse in CCU 

inside CIM macro. In the DNN mode, the CCU is configured 

as four adder trees to perform 8bit MAC utilizing the 1b results 

from DAMEM. In CPU mode, logics are reused to support 

different instructions. Extra logic beyond adder trees is also 

added for complete ALU functions. Input and clock gating are 

performed on unused logic in different modes. A customized 

32b instruction set architecture (ISA) is designed to support 

integer vector CPU function. As in Fig. 5, 5b opcode defines 

different instruction types with the first 3 bits designated for 

locations of the operands and results. Special instructions such 

as “MVCSR”, “SWITCH” and “PCS”, are added to configure 

the control and status registers (CSR) for smooth mode 

switching between CPU and CNN. Reconfiguration costs 8.8% 

area overhead on CIM macro to support vector CPU operations. 

Fig. 6 shows a data movement scheme facilitating end-to-end 

operation for both CPU and CNN. After vector CPU operation 

for preprocessing, the CPU stores the CNN input data to 

DAMEM so that GPCIM can directly process the first layer of 

CNN without any data transfer in conventional architecture. 

After CNN processing, the data preparation such as data 

alignment, batch normalization and padding between different 

layers are performed seamlessly by CPU by configuring 

DOMEM to Dcache avoiding further data movement. As 

shown in Fig.6, GPCIM achieves 52~56% end-to-end latency 

improvement for CNN tasks due to elimination of data transfer 

and parallel vector processing compared with Gemmini [1] 

using a scalar RISC-V CPU and an accelerator. 

Measurement Results and End-to-end Test Case 

A 65nm test chip was fabricated with a nominal supply of 

1.0V. As shown in Fig.7, for DNN mode, GPCIM achieves a 

7.62~17.8TOPS/W 8-bit system energy efficiency and a 

14.8~28.5TOPS/W macro energy efficiency matching prior 

CIM CNN performance [3, 4]. GPCIM achieves the highest 

CPU efficiency, more than 17.8X improvement compared with 

prior 4 vector RISC-V CPU and 3 scalar RSIC-V CPU despite 

a lower throughput due to slower operating frequency and less 

vectors (scalable) being implemented [7-10]. A comparison 

table with prior CIM and RISC-V CPUs is also shown in Fig. 

7. Compared with a prior instruction supported CIM [5], this 

CIM achieves 7.3X efficiency improvement for 32b MUL 



instruction. Compared with a recent reconfigurable 

ASIC+CPU digital design [6], GPCIM achieves 10X higher 

DNN efficiency and 118X higher CPU efficiency. Fig. 8 

further demonstrates a detailed end-to-end case study from 

GPCIM using a popular CNN-based Simultaneous 

Localization and Mapping (SLAM) task for mobile robots. 

76% operations including preprocessing (camera pose 

estimation, depth refinement) and post-processing (key-frame 

creation, graph pose optimization) need to be performed by 

CPU due to the non-CNN operations such as division and 

exponentiation which are challenging for conventional 

CIM+CPU architecture. For the SLAM task, the GPCIM 

achieves 35X CNN efficiency improvement, 7.9X CPU 

efficiency improvement, 37% end-to-end latency improvement, 

compared with Gemmini [1].  
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techniques with CPU being bottleneck and contributions of this work. 
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Fig. 8 A detailed case study on the SLAM application from GPCIM. 
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