
A General-Purpose Compute-in-Memory Processor Combining CPU and Deep

Learning with State-of-the-art CPU Efficiency and Enhanced Data Locality

Yuhao Ju, Yijie Wei, Xi Chen, Jie Gu

Northwestern University, Evanston, IL, USA
Abstract

This work presents a general-purpose compute-in-memory

(GPCIM) processor combining DNN operations and vector

CPU. Utilizing special reconfigurability, dataflow and

instruction set, the 65nm test chip demonstrates a 28.5

TOPS/W DNN macro efficiency and a best-in-class peak CPU

efficiency of 802GOPS/W. Benefit from a data locality flow,

37% to 55% end-to-end latency improvement on AI-related

applications is achieved by eliminating inter-core data transfer.

Introduction

While tremendous progresses have been made for compute-

in-memory (CIM) techniques, for end-to-end operations of AI-

related tasks, a general-purpose computing unit, e.g. CPU, is

not only mandatory but also often dominate the total latency

due to significant pre/post-processing, data

movement/alignment and versatile non-MAC tasks. As shown

in Fig.1, the conventional architecture which engages the CPU

core, ASIC/CIM accelerator, and a DMA engine for data

transfer suffer from processor stall and underutilization issues.

DNN computing often takes only 12%-50% of total run time

leaving performance bottlenecked by CPU processing and data

transfer [1]. For instance, 83% of run time was spent by CPU

for data movement and preparation from the recent AR/VR

SoC [2]. Unfortunately, the recent CIM developments do not

address the need for improvements from CPU related

processing and data transfer. In this work, we propose a unified

general purpose CIM (GPCIM) architecture which obtain high

efficiency for both DNN and vector instruction-based CPU.

The highlights of this work include: (1) A unified digital CIM

architecture has been developed for both vector CPU and DNN

operations; (2) Best-in-class energy efficiency has been

achieved on the vector CPU by exploiting the simpler pipeline,

removal of cache access and data locality of CIM architecture;

(3) To overcome the inter-core data transfer overhead in

conventional architecture, special dataflow and dedicated

instruction set are constructed for seamless data sharing

between CPU and DNN operations rendering significant

improvement on end-to-end performance. A 65nm test chip is

developed to demonstrate the state-of-the-art energy efficiency

from the GPCIM processor for both DNN (23.5TOPS/W) and

CPU (802GOPS/W) tasks in end-to-end real-time applications.

GPCIM Design and Instruction Set

Fig. 2 shows the CIM macro which contains Data Cache

Activation Memory (DAMEM) and Data Cache Output

Memory (DOMEM) with the central computing units (CCU).

The DAMEM is a 32bit 9T bitcell array which supports both

regular SRAM function and 1b multiplication for DNN by

appending a 3T NAND gate to the 6T SRAM. DOMEM is an

8T bitcell array with 2 bitlines which performs 2 read and 1

write within one clock cycle. Extra instruction cache and

weight SRAM are added to support DNN and CPU functions.

As shown in Fig. 2, in DNN mode, the CIM macro uses

DAMEM as input memory for digital CIM MAC operation

with stationary input and DOMEM as output memory. In CPU

mode, DAMEM is used as a data cache (Dcache) and DOMEM

acts as both register file (RF) and Dcache. Data movement

between Dcache, RF and pipeline stages in traditional CPU has

been significantly reduced or eliminated in GPCIM design. As

shown in Fig. 2, a five-phase single-cycle operation including

write-back, pre/dis-charge, latch update and vector execution,

is performed for the CPU/DNN operation from DOMEM. Fig.

3 highlights the significant power benefits of GPCIM by

exploiting CIM’s concise dataflow in comparison with an

equivalent digital counterpart of vector RISC-V pipeline core

with L1 cache and RF. Shorter 2-stage pipeline in GPCIM

leads to reduced flip-flops by 7.6X. Vector RF is eliminated by

integrating it into CIM Dcache. ALUs are merged into CIM

macro eliminating data cache access with 1.9X cache power

saving and 1.3X ALU power saving. Certain pipeline logic in

RISC-V pipeline core such as forwarding is also removed with

2.1X logic power saving. A 4.62X total power reduction is

achieved for GPCIM. Fig. 4 illustrates logic reuse in CCU

inside CIM macro. In the DNN mode, the CCU is configured

as four adder trees to perform 8bit MAC utilizing the 1b results

from DAMEM. In CPU mode, logics are reused to support

different instructions. Extra logic beyond adder trees is also

added for complete ALU functions. Input and clock gating are

performed on unused logic in different modes. A customized

32b instruction set architecture (ISA) is designed to support

integer vector CPU function. As in Fig. 5, 5b opcode defines

different instruction types with the first 3 bits designated for

locations of the operands and results. Special instructions such

as “MVCSR”, “SWITCH” and “PCS”, are added to configure

the control and status registers (CSR) for smooth mode

switching between CPU and CNN. Reconfiguration costs 8.8%

area overhead on CIM macro to support vector CPU operations.

Fig. 6 shows a data movement scheme facilitating end-to-end

operation for both CPU and CNN. After vector CPU operation

for preprocessing, the CPU stores the CNN input data to

DAMEM so that GPCIM can directly process the first layer of

CNN without any data transfer in conventional architecture.

After CNN processing, the data preparation such as data

alignment, batch normalization and padding between different

layers are performed seamlessly by CPU by configuring

DOMEM to Dcache avoiding further data movement. As

shown in Fig.6, GPCIM achieves 52~56% end-to-end latency

improvement for CNN tasks due to elimination of data transfer

and parallel vector processing compared with Gemmini [1]

using a scalar RISC-V CPU and an accelerator.

Measurement Results and End-to-end Test Case

A 65nm test chip was fabricated with a nominal supply of

1.0V. As shown in Fig.7, for DNN mode, GPCIM achieves a

7.62~17.8TOPS/W 8-bit system energy efficiency and a

14.8~28.5TOPS/W macro energy efficiency matching prior

CIM CNN performance [3, 4]. GPCIM achieves the highest

CPU efficiency, more than 17.8X improvement compared with

prior 4 vector RISC-V CPU and 3 scalar RSIC-V CPU despite

a lower throughput due to slower operating frequency and less

vectors (scalable) being implemented [7-10]. A comparison

table with prior CIM and RISC-V CPUs is also shown in Fig.

7. Compared with a prior instruction supported CIM [5], this

CIM achieves 7.3X efficiency improvement for 32b MUL

instruction. Compared with a recent reconfigurable

ASIC+CPU digital design [6], GPCIM achieves 10X higher

DNN efficiency and 118X higher CPU efficiency. Fig. 8

further demonstrates a detailed end-to-end case study from

GPCIM using a popular CNN-based Simultaneous

Localization and Mapping (SLAM) task for mobile robots.

76% operations including preprocessing (camera pose

estimation, depth refinement) and post-processing (key-frame

creation, graph pose optimization) need to be performed by

CPU due to the non-CNN operations such as division and

exponentiation which are challenging for conventional

CIM+CPU architecture. For the SLAM task, the GPCIM

achieves 35X CNN efficiency improvement, 7.9X CPU

efficiency improvement, 37% end-to-end latency improvement,

compared with Gemmini [1].

ISSCC 18ISCA 17
TPU

DAC
[1]

ISSCC CICC
[2]

ISSCC

CIM

In
p

u
t

SR
A

M

Output
SRAM

Control

A
d

d
re

ss

Pipeline Core

P
C

ID EX

M
EMIF W
B

Macro

ADC

D
A

C

In
p

u
t

SR
A

M

Output
SRAM

Control

Data Cache

A
dd

ress

Pipeline Core

P
C

ID EX

M
EMIF W
B

Data Cache

Input/Output
Data Transfer

DMA
Engine

CPU

DMA
Engine

CPU Processing DNN ComputeData Transfer
Pre/Post-processing, data management

J

A
SI

C
 S

o
lu

ti
o

n
CI

M
 S

o
lu

ti
o

n

0%

100%

20%

40%

60%

80%

En
d

-t
o

-e
n

d

R
u

n
 T

im
e Wait for CPU and

data transfer

End-to-end Run Time Breakdown

CNN Processing

DAMEM

DOMEM

Central
Computing Units

To
p

 C
tr

l
B

o
t.

 C
tr

l

Weight
SRAM

Instr.
Cache

Macro
1. Unified CIM for DNN and CPU
2. Elimination of Inter-core data transfer
3. Significant Improvement of CPU

efficiency through CIM

CPU Power Reduction

RF + Flip-flops
43%

Dcache
17%Icache 13%Other

Logic
27%

CPU Efficiency

G
O

P
S/

W
 (

lo
g)

0

100

1000

Existing RISC-V
and this CIM

Input/Output
Data Transfer

L
No

Improvement
No

Improvement

L
10 ~100x Improvement

Th
is

 W
or

k

J
J

GPCIM

Conventional Vector CPU

Unified CIM

Dcache
21%

22%
RF + Flip-flops

Other Logic
43%

Sa
m

u
rA

I

This CIM

D
u

st
in

SN
C

P
U

[6
]

Si
Fi

ve

PI
C1

8F
13

K
22

J

Digital
MAC Array

~5x Reduction Icache
14%

0

1

N
o

rm
al

iz
ed

R

u
n

 C
yc

le

0.5
53.3%

End-to-end Latency

ResNet18VGG16

54.0%

ImageNet
RISC-V SoC [1]
This Work

Fig. 1 Challenges of the end-to-end AI tasks using DNN/CIM

techniques with CPU being bottleneck and contributions of this work.

9T 9T

9T 9T

Top-level Architecture

9T

9T

..
. ..
.

...

...

Col0

SA SA SA

WL

Weights

T
o

p
 C

IM
 C

o
n

tr
o

l

T
o

p
 P

u
ls

e
 G

e
n

e
ra

to
r

W
e
ig

h
ts

 S
R

A
M

9T 9T

9T 9T

9T

9T

..
. ..
. ..
.

...

...Row0

SA SA SA

C
o

n
tr

o
l

Latch & Buffer

Central Computing Units (CCU, 4 units)

8T

8T

..
.

SASA

Latch & Buffer

B
o

t.
 C

IM
 C

o
n

tr
o

l

B
o

t.
 P

u
ls

e
 G

e
n

e
ra

to
r

In
s
tr

u
c
ti

o
n

 C
a
c
h

e

8T

8T

..
.

SASA

8T

8T

..
.

SASA

8T

8T

..
.

SASA

...

...

Col0

WL_A

WL_B

Pre-charge_A
Pre-charge_B

Pre-charge

B
L

/B
L

B

4 CoresTop ControlDCO

Sense
clk

Sense
clk

9T Cell including 1b
Multiplication

Area Overhead

Scan I/O

D
A

M
EM

 3
2x

64

[31:0]

0

4

2

A
re

a
(u

m
2
)

10T6T This
9T

18%

WL

W Out

B
LB B

L

NAND

8T cell allowing 2 read
and 1 write in 1 cycle

W
ei

gh
ts

SR

A
M

In
s
tr

.
C

a
c
h

e

4 Adder Trees

To
p

 C
tr

l
B

ot
. C

tr
l

Input CIM

Output
Memory

Weights

Accumulation

DNN Results

DNN Mode

CLK

8T
Array

W
ri

te

A&B
ReadP

re
-c

h
ar

ge

1 clock cycle

W
ei

gh
ts

SR

A
M

In
s
tr

.
C

a
c
h

e

4 ALUs

To
p

 C
tr

l
CP

U
 C

tr
l

Vector CPU Mode

C
tr

l S
ig

n
al

s

Logic
Reuse

Memory
Reuse

D
O

M
EM

 1
28

x1
28 Top Dcache

Execute

D
N

N
 O

u
t

Operand

OperandResults

Results

Bottom
Dcache/RF

Col1 Col31

Row0

Row31

Col 0 Col 1 Col 31Bank1Bank0

Row31

Col1 Col2 Col127

Row127

Row0 8T

8T

..
.

SASA
Col3

B
L

_
A

/B
L

B
_

A

B
L

_
B

/B
L

B
_

B

Configurable Modes

Pu
ls

e
G

en
er

at
or

CLK

WL_A
WL_B

WB_EN

PRC_EN

Sense clk
Latch

Write
Back Pr

e-
ch

ar
ge Bitline

Discharge
Latch

Update

ALU Operation
& Reg Update

Control Sequence in Vector CPU Mode

Enable signal for data writing
Pre-charge enable signal

WL for Port A
WL for Port B

Enable signal for sense amplifier
Latch update signal

WL_A

B
LB

_A

B
L_

A

WL_B

B
LB

_B

B
L_

B

Fig. 2 Chip architecture, reconfiguration modes and CIM cells.

0

100

20

40

60

80

P
e

rc
e

n
ta

ge
 P

o
w

e
r(

%
)

IcacheL1
Dcache Flip-FlopsRF ALUs Other

Logic
Total

Power

1.9x 7.6x 1.3x2.1x

RF is integrated to CIM SRAM

Vector CPU mode of GPCIM
Vector RISC-V Pipeline Core

*Same MVL and clock speed for both

Vector CPU Mode Power Reduction

A
d

d
re

s
s

IF
 / ID

ID
 / E

X

E
X

 / M
E

M

M
E

M
 / W

BD$

4 PC+
Branch

M
U

X

PC & IF ID EX MEM WB

A
L

U

RF / D$

CCU

C
IM

 S
R

A
MC

trl / E
X

I$

In
s
tr

.
$

Ct
rl

 L
og

ic

C
tr

l=
P

C
+I

F+
ID

EX

-1
.9

x
d

u
e

to

 C
IM

Forwarding

V
ec

to
r

Pi
pe

lin
e

G
PC

IM

Decoder
Logic

Vector
RF

D$

Fig. 3 Power reduction from GPCIM compared with RISC-V CPU.

Boolean Boolean
11b Adders

10b
Adders

+ + + + + + + + + + + + + + + +

+ + + + + + + +

+ + + +
+ +

+

+

Reg 32b

Sel
Reg 32b

9b
Adders

12b Adders

32b32b +32b Adder

32b
MUX

+ + + + + + + +

+ + + +
+ +

+

+

Reg 32b

<<

Sel
Reg 32b

32b32b +

32b
MUX

33b
Adders + + + ++ + + + ++ + + + ++ + + + ++

36b
Adders

41b
Adder

64b Adder

40b

+ + + +8b
Adders

34b << 2 34b << 2

36b << 4

OpA
32b \

\
0

OpB 32b

\

8b

8x
 [3

1:
0]

CCU in DNN Mode: Adder Trees CCU in Vector CPU Mode:

34b 34b

36b

M
U

X

Bottom Memory
8x

\
\

<<8

\

8b

M
UX

8x

Bottom/Top Memory

32x 8b data

\

\

\

<<Shifter
Reuse

4X 4X

Shifter

<<8

VMul VBoolean VShift

Overhead

Fig. 4 Logic reuse of CCU in DNN mode and vector CPU mode.

Customized CIM Instruction Set

Weight Ctrl Bitcell Ctrl Parameter CSRs Set up Adder Tree set up Switch

Location Opcode R0/Imm R1 RD/Imm
07815162324282931

Instruction 32b

Set up CSRs in the top and bottom
controller, 4~6 cycles

Set up parameters such as activation,
scaling factor, CNN/FCN, 6~8 cycles

Set up adder tree CSRs,
3~4 cycles

Switch
Instruction

Switching Sequence from CPU Mode to DNN Mode

15~20 Cycles

Type Opcode R0 R1 RD # Cycles
Vector

Boolean

Vector
Arithmetic

Vector
Shift

Special
Functions

VAND, VOR,
VXOR, VNAND,
VNOR, VXNOR

1

1
1
4
4
1
1

VADD
VSUB
VMUL

VMULH
VSLL

VSRL,VSRA

3 bit for locations of R0, R1 and RD, 0 Means in DAMEM (top), 1 for DOMEM (bottom)

* # Cycles is based on 32b operations MVCSR: Move data to control and status registers
SWITCH: Switch mode from vector CPU to DNN modePCS: Stop and hold PC for DNN mode

Vector
Move

VCompare
Jump

Branch

1
1
1
1
1
1
2
1

Imm

Imm
CSR

Imm

VMV
VMVI
> , < , =

JMP
> , < , =
MVCSR

PCS
SWITCH

Type Opcode R0 R1 RD # Cycles

0

1

2

3

4

N
o

rm
al

iz
ed

 A
re

a

w/
Vector CPU

w/o
Vector CPU

Extra Flip-flops
Extra Arithmetic Logic
Extra Control Logic

Adder Tree

8.8%

Macro Area Overhead

Control
Bitcell Array

Digital RISC-V

Vector
CPU Only

vjal

vseq

vad
d

vsu
b

vsll

vslt

vsltu

vxo
r

vsrl

vsra

van
d

vm
v

Vector RISC-V in Fig. 3 GPCIM
Power reduction for different vector Instructions

0.6

1.8

1.2

N
o

rm
. P

o
w

er

0 vm
u

l

vm
u

lh

Average 4.45x

Fig. 5 Customized instruction sets, mode switching sequence, area

overhead and instruction energy reduction from GPCIM.

W
e

ig
h

ts

SR
A

M
In

s
tr

.
C

a
c

h
e

4 ALUs

C
o

n
tr

o
l

P
C

/I
F/

ID
C

tr
l S

ig
n

al
s

Data Locality for End-to-end ML Tasks

Raw Data or
 DNN Results

Mode Switch

ADMEM Data
Locality

Cifar10

DNN work
CPU WorkCPU

Results

W
e

ig
h

ts

SR
A

M
In

s
tr

.
C

a
c

h
e

4 Adder Trees

C
o

n
tr

o
l

C
o

n
tr

o
l

CPU
Results

Weights

Raw Data or
 DNN Results

Accumulation

Vector CPU Mode DNN CIM ModeMode Switch

ODMEM Data
Locality

Central Computing
Units Reconfiguration

VGG16 ResNet18

N
o

rm
. R

u
n

 C
yc

le

0

1

0.5

N
o

rm
. R

u
n

 C
yc

le

ImageNet

0

1

0.5

VGG16 ResNet18

End-to-end Latency Compared with [1]

54.0%

G
em

m
in

i[1
]

G
P

C
IM 53.3%

G
P

C
IM[1]

52.6%

G
em

m
in

i[1
]

G
P

C
IM 55.7%

[1]

G
P

C
IM

Data Transfer

DNN work
CPU Work
Data Transfer

Fig. 6 Data locality flow and end-to-end latency improvement for

CNN image classification tasks.
Frequency v.s. Voltage

245MHz

Fr
eq

u
en

cy
 (

M
H

z)

Power v.s. Voltage

Voltage (V)
0.5 1.30.90.7 1.1
0

300

200MHz

DNNCPU

Voltage (V)
0.4 1.40.80.6 1.0 1.2

0

8

16

4-
co

re
P

o
w

er
(m

W
)

8.4mW

4.9mW

CPU DNN

DNN Efficiency and CPU Performance
Ef

fi
ci

en
cy

 (
TO

P
S/

W
)

P
er

fo
rm

an
ce

 (
G

O
P

S)

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

35

10

25

15

20

30

35

5

0

2

5

3

4

6

7

1

0
0.6 1.20.8 1.0

Voltage (V)

Macro
Effi.

SoC
Effi.

CPU
Perf.

*Perf. is for 32b, efficiency is for 8b

3.92GOPS

14.8TOPS/W

7.62TOPS/W

Efficiency V.S. Throughput for Vector
Processors

1

1000

Ef
fi

ci
en

cy
 lo

g(
GO

P
S/

W
)

[7]

GPCIM

[9]
[10]

17.8x efficiency
improvement

*Normalized to same voltage. Cache
size may be different.

10

150

100

Throughput (GOPS)
0 4020

[8]Sa
m

u
rA

I
D

u
st

in

[6]

Scalar RISC-V

Vector RISC-V

Comparison Table

*Scale up to 32b. Original data for 8b operation: 2.2TOPS/W (Add) and 220GOPS/W (Mul)
*

ISSCC ISSCC ISSCC ISSCC This Work
Process 28nm 22nm 28nm 65nm 65nm

Area (mm2) 6.69 0.202 (macro) 2.55 4.47 1.52
Architecture DNN DNN CPU CPU+DNN CPU+DNN

Type Digital CIM Digital CIM Digital CIM Digital Digital CIM
CPU Power - - - 589mW@1V

(10 cores)
4.89mW@1V

(4 cores)
DNN Power 69.4mW@1V 35mW@0.72V - 116mW@1V 8.4mW@1V

Bit Precision INT8, INT16 INT4,INT8 Arbitrary INT8, INT32 INT8, INT32
Max Frequency 220MHz - 475MHz 400MHz 245MHz
Norm. Supply Vdd 1.0V 0.72V 1.1V 1.0V 1.0V

Macro Size 12KB 8KB 16KB - 9KB
DNN SoC Efficiency

(TOPS/W) 19.5 (1V, 8b) - - 0.66 (1V, 8b) 7.62 (1V, 8b)

DNN Macro Efficiency
(TOPS/W) 30.8 (1V, 8b) 24.7 (0.72V, 8b) Add: 2.2 (1V, 8b)

Mul: 0.22 (1V, 8b) - 14.8 (1V, 8b)
23.5 (0.7V, 8b)

CPU Performance
(GOPS) - -

Mul:19.7 (1V, 32b)

Add: 4 (1V, 32b)
Mul: 1 (1V, 32b)

Add: 3.92 (1V, 32b)
Mul: 0.98 (1V, 32b)

CPU Efficiency
(GOPS/W) - -

Mul:0.75 (1V, 32b)
Add: 6.79 (1V, 32b)
Mul: 2.35 (1V, 32b)

Add: 802 (1V,32b)
Mul: 144.7 (1V, 32b)

Add:27.6 (1V, 32b)

Add:550 (1V, 32b)*

Die Photo

0.79mm

1.
91

5m
m

In
s
tru

c
tio

n
 &

 W
e
ig

h
ts

 S
R

A
M

ODMEM

CIM
Core 1

CIM
Core 2

CIM
Core 3

CLKSCAN IO
ADMEM

CCU

C
tr

l

Fig. 7 Measurement results, comparison table and die photo.

* L2 loading, IO and off-chip reload time are excluded

N
o

rm
. R

u
n

 C
yc

le

End-to-end Latency for CNN-SLAM

Application: CNN-SLAM

0

1

0.5

Gemmini[1] GPCIM

37.3%

Time

Heterogeneous ASIC/CIM SoC vs GPCIM
for CNN-SLAM

C
P

U
D

N
N

Preprocessing

Th
is

 W
o

rk

Pose Estimation and
Trajectory Tracking

Depth Map and 3D
Scene Reconstruction

Sub-job Percentage

Camera Pose Estimation 12%
Depth Refinement 31%

24%
Key-frame Creation 15%

Pose graph Optimization 18%

CNN

CNN Depth
Prediction

3
D

 G
lo

b
al

R

e
co

n
st

ru
ct

io
n

Ev
er

y
Fr

am
e

K
ey

Fr

am
e Pose Graph

Optimization
4

1
2Depth

Refinement

Camera Pose
Estimation

3

CNN Post-processing

DNN 1st
layer DNN 2nd layerInter-layer data

Processing
Inter-layer data

Processing ... DNN last layer

1 2 3 4 DNN Mode
Vector CPU Mode

...
...

1 2 3 4

Accelerator Working
CPU Working
Data transfer and CNN inter-layer data processing

37% Latency saving

Pose Graph
Optimization

CNN

Depth Refin.

Camera Pose
Estimation

Data Transfer
and inter-layer
data processing

CPU Efficiency for CNN-SLAM
GPCIM

0

800

600

400

200

Ef
fic

ie
nc

y
(G

O
PS

/W
)

Gemmini[1]

Camera Pose
Estimation

Depth
Refine.

Key-frame
Creation

Pose
Graph Opt.

7.72x
8.02x

7.60x 8.18x

0

16

12

8

4

CNN Efficiency

Ef
fic

ie
nc

y
(T

O
PS

/W
)

35x

8b MAC
operation

GPCIM

32b CPU operation

Gemmini
[1]

Idle Idle

A
SI

C
 +

 C
PU

G
PC

IM

Time

Fig. 8 A detailed case study on the SLAM application from GPCIM.

Acknowledgements This work is supported in part by NSF grant

CCF-2008906.

References
[1] H. Genc et al., DAC, 2021. [2] H. E. Sumbul et al., CICC,2022.

[3] F. Tu et al., ISSCC, 2022. [4] Y. -D. Chih et al., ISSCC, 2021. [5]

J. Wang et al., ISSCC, 2019. [6] Y. Ju et al., ISSCC, 2022. [10] B.

Zimmer et al., JSSC, 2016. [8] A. Gonzalez et al., ESSCIRC, 2021. [9]

K. Patsidis et al., ISCAS, 2020. [10] M. Perotti et al., ASAP, 2022.

