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ABSTRACT 

Emotional AI or Affective Computing has been projected to grow 

rapidly in the upcoming years. Despite many existing 

developments in the application space, there has been a lack of 

hardware-level exploitation of the user's emotions. In this paper, we 

propose a deep collaboration between user's affects and the 

hardware system management on resource-limited edge devices.  

Based on classification results from efficient affect classifiers on 

smartphone devices, novel real-time management schemes for 

memory, and video processing are proposed to improve the energy 

efficiency of mobile devices. Case studies on H.264 / AVC video 

playback and Android smartphone usages are provided showing 

significant power saving of up to 23% and reduction of memory 

loading of up to 17% using the proposed affect adaptive 

architecture and system management schemes. 
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1 INTRODUCTION 

The recent surge in Artificial Intelligence (AI) and Internet-of-

Things or the combined Artificial Intelligence of Things (AIoT) has 

created enormous impacts on nearly all technology sectors.  As 

projected, the deep learning based AI technology is expected to 

create $15.7 trillion in revenue by 2030, or 14% of global GDP 

from a study by PwC  [1], while the AIoT market is expected to 

reach $78.3 billion with 39.1% CAGR as reported from [2].  The 

bloom is partially due to the revolutionary accuracy that deep 

learning techniques have achieved on image or voice recognition 

leading to enhanced user experience on mobile applications [3].  

While deep learning can address many challenging tasks such as 

computer vision related classification or natural language 

processing tasks, there is still one crucial missing link, the "human 

factor", that has not been well considered or addressed in existing 

computing techniques and embedded wearable systems.  

As a matter of fact, the recent AI computing techniques hold 

similarities to the human brain for many cognitive tasks.  

Convolutional deep neural networks, long-short term memory 

(LSTM), and deep reinforcement learning all root in the behaviors 

of the human brain's cortex functions.  Therefore, "human-in-the-

loop" has become another critical dimension that is being rapidly 

developed for modern AI technology.  In fact, the human factors 

are already being embedded into many existing AI-related systems 

showing significant boosts to the targeted AI tasks.  For instance, 

modern recommender systems heavily rely on learning from users' 

experiences to achieve high prediction accuracy [4].  Smartphones 

have also been utilized to track users' psychological states to 

diagnose users' mental health [5].  Recently, Apple has announced 

a collaborative study on users' depression using smartwatches [6].  

In summary, the knowledge of user's real-time feeling and emotions 

provide incredible opportunities to improve people's life quality.   

To address the above demands and opportunities, recently, 

emotional AI or affective computing has experienced significant 

growth in research and developments.  Emotional AI or "Affective 

Computing" refers to the computing techniques in both software 

and hardware that enable detection, classification and utilization of 

human's affects including both short-term mental states, e.g. stress, 

excitement, fatigue,  or longer-term mental conditions, e.g. 

depression, personalities, etc. [7].  Recent advancements in 

embedded devices and wearable technology, e.g. smartwatch, have 

created new capabilities to bring affective computing into real-life 

usage [8]. Based on the study from GlobalMarket review [9], the 

market revenue of affective computing has been projected to grow 

exponentially from 2016 to 2027 with driving applications 

including marketing, retail, healthcare, gaming and driving 

assistance, etc.  Essentially, the knowledge of real-time human 

emotion renders a new dimension and capability to boost the 

quality of business services and human assistance.  While emotion 

is conventionally considered psychological with subjective bias, 

significant efforts have been developed to quantitatively and 

objectively study human emotion. Fig. 1(a) & 1(b) shows the 

commonly used two dimensional and three dimensional Russell's 

circumplex model, where special indexes of valence, arousal, 

dominance are used to quantify people's mental states such as 

happiness based on the mood angle formed by the three key indexes 

[10].  Here, valence represents people's "likeness" or "pleasure" 

dimension.  Arousal shows the "activation" or "excitement" of 

people.  Dominance, which is less utilized than valence and arousal, 

shows people's feelings on "being controlled" or "freedom".   Fig. 

1(c) shows a recent commercial wristband from Empatica that can 

be used to collect physiological information from heart rate and 

skin conductance to derive human emotion [11]. Fig. 1(d) shows an 

example from MIT business school to detect stress level from skin 

conductance during exams of students. It shows that strong 

correlation between mental stress and student's performance exist 

and the stress measurements from wearable sensors can be used to 

predict student's performance with 76% accuracy [12]. 

  
Fig. 1 General Concept of Affective Computing; (a) Two-dimensional 

Russel circumplex model[10]; (b) Three-dimensional emotion model; 

(c) E4, Empeca wristband for affect sensing[11], (d) Example of 

measured skin conductance to derive stress level from students[12].  
Existing studies on affective computing mostly focused on 

two categories (1) detection of human affect based on human 
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physiological signals or activities; (2) applying affect knowledge to 

improve user's experience or mental/physical health condition.  As 

an example,  MIT media labs have shown that driver's stress level 

can be inferred from heart rate and skin conductance (SC) or 

galvanic skin response (GSR)  sensors, which in turn create an 

interactive stress management system for a more comfortable and 

safer driving conditions [13].  The same group also used GSR and 

accelerometer data to classify people's stress and happiness with 

70% accuracy [14].  Improving the workplace condition is another 

commonly used application for affective computing [15,16]. The 

recent boom in AR and VR technology for gaming gives another 

possibility to cooperate with affective computing to change VR 

game scenes based on players' emotional conditions [17]. In the 

social media applications, users' eye movements were also tracked 

to detect users' feelings to improve users' online experiences [18].  

In addition, it has been reported that physiological signals can be 

used to derive user's personality while performing multimedia 

playback [19]. In summary, many new applications are being 

explored based on affective computing or "emotional AI" 

leveraging the advancement of low-power wearable devices and 

state-of-art machine learning techniques.   

However, in all existing developments of affective computing, 

the focus has been on improving detection accuracy or usage of 

affects at the system level.  There is a lack of study on how the 

capability of affect detection can be applied at low-level computing 

architecture or embedded processors to improve the efficiency of 

computing devices. To close the gap, this work proposes a holistic 

scheme where the information from affective computing is applied 

to critical hardware operations such as memory management and 

multimedia playback.  Case studies based on existing datasets are 

used to demonstrate that the proposed affect driven schemes can 

significantly benefit the hardware efficiency of low power 

embedded systems such as smartwatches.   

The contribution of this work includes (1) for performing 

emotion recognition on a resource-constrained wearable device, 

different deep learning classifiers were compared across different 

datasets to provide guidance on the model choices; (2) To close the 

gap between real-time human affects and embedded hardware 

operation, an affect driven video decoder design and playback 

scheme is proposed to achieve significant power saving; (3) To 

further leverage the emotion knowledge of real-time affect 

detection, an application and memory management scheme on 

Android smartphone is proposed.  As demonstrated in this work, 

based on the user's affect state, background applications is 

selectively activated or killed, rendering significant savings on the 

memory loading effort.       

2 AFFECTIVE COMPUTING WITH 

EFFICIENT CLASSIFIERS 

2.1 General System Setup 

Fig. 2 shows the general affective computing system setup and 

application schemes used in this work based on commercial 

wearable devices such as Apple Watch and smartphones. Since 

wearable devices and the smartphone are broadly available in daily 

life, the user's biosignals and daily activity can be easily detected 

by the smart wearable devices such as smartwatch with built-in 

physiological sensors such as Photoplethysmography (PPG) 

sensor, microphone, electrocardiogram (ECG) sensor, and Inertial 

Measurement Units (IMU). To extend the limited battery life of 

wearable devices, power-hungry signal processing, feature 

extraction, and classification work, e.g. deep learning for affect 

classification, may be handled by more powerful smartphone 

application processors. For instance, Apple's A13 processor and 

Qualcomm's Snapdragon 855 are empowered by built-in "neural 

engine" cores for deep learning tasks. 

 
Fig. 2 General system configuration of affective computing in this work.  

The availability of "neural engine" on a smartphone and the 

rapid developments of affective computing opened a door to 

establish a connection on the user's psychological feeling and the 

hardware/software operations of embedded devices, which have 

not been studied previously but hold strong promise to provide a 

new class of "human machine interface". For instance, an emotion-

aware recommendation system can provide users with a much more 

accurate shopping and online experience.  As proposed in this work, 

an intelligent emotion-based application and memory management 

system can optimize the user's favorite applications' runtime and 

background status for enhanced energy efficiency. Hence, this 

work explores the design and optimization of a wearable embedded 

device exploiting the use of affective computing.  

2.2 Hardware Efficient Affect Classifier 

Although machine learning models for emotion classification 

tasks have been explored in previous works[14], there is a lack of 

existing work considering real-time emotion classification on 

wearable devices. To unleash the potential of "real-time" affective 

computing, embedded hardware deployment of an affect classifier 

is highly benefitial despite of challenges. Due to the power-hungry 

operation of the deep learning classifier and limited memory and 

battery of wearable devices, we herein study the accuracies of  

different classifiers to guide system design for wearable devices.   

Three emotion databases are used in this study with popular 

classifiers. The RAVDESS dataset [20] contains 7356 sets of 

emotional speech and songs by 24 actors. The EMOVO dataset [21] 

includes 14 sentences with different emotions in Italian by six 

actors. The CREMA-D dataset [22] include 7442 video clips from 

91 actors with 12 English sentence. All these datasets are labeled 

with emotional labels, e.g., neutral, sad, fear, angry, and happy. The 

input voice files are processed to generate the input features, 

including Mel-frequency cepstral coefficients (MFCC), zero 

crossing, root-mean-square deviation (rmse), sound pitch, and 

magnitude. We study three commonly used classifiers, including 

the fully connected neural network multi-layer perceptron (MLP) 

classifier, convolution neural network classifier (CNN), and long-

short-term memory (LSTM), which are specialized for time series 

classification. TensorFlow Keras library is used for building the 

models. Due to the limitation of wearable devices, small-size 

models for each classifier are built so that they can be deployed into 

smartphone or smartwatch devices for real-time detection. The 

MLP model contains three layers with total 260 neurons and 508 k 

trainable parameters. The CNN have around 649 k parameters with 

three layers of 32, 64, 128 neurons on each layer respectively. The 
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LSTM have two layers with total 320 units and around 429 k 

trainable variables.  
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Fig. 3 (a) Confusion matrix of RAVDESS dataset by LSTM classifier; 

(b) Overall classification accuracy by each model;  (c) Weight size with 

floating point and 8-bit quantization of each model; (d) Accuracy with 

different precisions of each model.  

Fig. 3(a) shows one example of the confusion matrix from the 

LSTM classifier results on the RAVDESS dataset. Fig. 3(b) shows 

the overall average classification accuracy among databases and 

models. Fig. 3(c) shows the weight size of each model based on 

EMOVO dataset, which highlights the hardware resource needed. 

Fig. 3(d) shows the quantized 8-bit accuracy on EMOVO dataset 

of each model with less than 3% accuracy loss versus floating point 

model. Amount all the results, the CNN and LSTM classifiers show 

better performance than the MLP classifier. Considering model size 

and accuracy, LSTM is observed to be more attractive to be 

deployed on resource limited wearable devices based on the 

datasets studied herein. 
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Fig. 4 Proposed system configuration for emotion-driven real-time 

memory and multimedia playback. 

3 AFFECT-DRIVEN ENERGY-EFFICIENT 

SYSTEM MANAGEMENT 
To exploit the knowledge of real-time affect detection from an 

on-device classifier as discussed in Section 2, in this work, we 

propose novel system management schemes to improve the energy 

efficiency of the embedded system. Fig. 4 shows the overall 

architecture and signal flow of the proposed affect-driven real-time 

memory/application management and multimedia playback 

schemes. The smartwatch is used to collect biosignals from the user 

with external sensors. The biosignals are processed from analog 

frontend modules and sent back to the user's smartphone for on-

device classification. Feature extractions such as frequency-based 

spectrum diagrams such as MFCC and time-based features such as 

mean, histogram, and variance are extracted and sent to the 

classifier. The results from the smartphone's AI classifier, e.g. 

"neural engine," are used to generate the accurate emotion labels 

used for the proposed real-time affect-driven video decoder and 

application management module for efficient system control.   

Two schemes are proposed in this work. First, as described in 

section 4, we propose an adaptive multimedia hardware design and 

management where the video decoders on wearable devices such 

as smartwatches can adaptively change the power saving strategy 

with the user's emotional states to fit the user's requirements.  

Second, in section 5, we propose an emotion-based smartphone 

App management scheme that adaptively allocates the limited 

RAM resources to user emotion related apps to reduce the power 

and time-costly reloading operations from flash memory.  

4 AFFECT-ADAPTIVE MULTIMEDIA 

MANAGEMENT SCHEME 
To improve the power efficiency of video decoders based on 

users' emotions, we proposed hardware modifications and relevant 

adaptive control schemes based on the conventional 

implementation of H.264/AVC video decoders for low power 

devices. The architecture of the proposed affect-driven H.264/AVC 

video decoder is shown in Fig. 5. In the conventional H.264 

decoder [23], the decode flow starts with a 128-bit Circular Buffer 

that receives compressed H.264 video bitstream from the source. 

Bitstream Parser fetches the input video bitstream from the Circular 

Buffer and processes it with CAVLC Decoder and Variable Length 

Decoder. IQIT Decoder recovers the residual data in the form of 

4x4 blocks. Inter/Intra Prediction modules are used to generate 

predicted pixels in the form of 4x4 blocks. The sum of residual and 

predicted data is sent to Deblocking Filter, which operates on the 

edges of macroblocks (MB) for better video quality. Finally, the 

decoded video data in YUV format is sent to external displayers.  

Fig. 5 The system architecture of the proposed affect-driven 

H.264/AVC video decoder. 

For the proposed affect-driven H.264 decoder, two strategies, 

adaptive deletion of non-critical input bitstream and deactivation of 

Deblocking Filter (DF), are deployed to save power consumption 

while slightly reducing decoded video quality in different scales 

based on the emotional states. The compressed H.264 bitstream 

goes through Input Selector, which reduces the size of the input 

bitstream and stores it in an additionally inserted Pre-store Buffer 

of 128 x 16 bits for the use of emotion adaptation. Once the data is 

available, the Circular Buffer starts to fetch data from the Pre-store 

Buffer, and the video decoding proceeds. Emotion Input determines 

the level of input bitstream reduction, which leads to an adjustable 
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range of power saving since the size of data to be processed is 

controllable. Typically, a more significant input data reduction 

results in more power saving but less video quality. The second 

knob added is the activation of the Deblocking Filter, decided by 

the emotional states. According to the experimental results, the 

deactivation of the Deblocking Filter reduces up to 31.4% power 

consumption with minor degradation of video quality in terms of 

fuzzy MB edges, with details shown later.  

The input data reduction by the Input Selector should be 

carefully managed to provide a wide range of adjustable video 

quality and avoid significant quality loss. Inside the compressed 

H.264 bitstream, three types of frames are associated with video 

contents: Intra-coded (I) frames, Predicted (P) frames, and Bi-

directional predicted (B) frames. I-frames contain the data needed 

to recover an entire image, which means decoding an I-frame is 

independent of other frames and is mostly utilized as the reference 

for decoding other frames. The decoding of P-frames requires 

decoding of previous images, and B-frames require prior decoding 

of subsequent images. Data of the three types of frames are packed 

in Network Abstraction Layer (NAL) units that begin with a start 

code (i.e., 0x000001 or 0x00000001) and subsequent identification 

bits for I, P, or B frames. In a group of sequential pictures with a 

similar background, an I-frame contains all the compressed 

information for the first picture. It is used as an indispensable 

reference and needs to be maintained to the largest extent. P-frames 

and B-frames contain the difference between these pictures and 

need fewer bits to be encoded. Therefore, to achieve maximum 

power saving with minimum quality impact, we abandon some data 

from P-frames and B-frames through the Input Selector, which 

leads to minor video quality when the emotional data indicates it is 

not critical. 

 
Fig. 6 Video decoder output (top); Video decoder layout and power 

saving of the affect-driven H.264/AVC video decoder compared with 

conventional design(middle); Skin conductance (SC) signal from one 

example in the database[24] and affect-driven video play back energy 

saving(bottom).  
Two parameters are given in the Input Selector when deleting 

NAL units for B-frames or P-frames to adjust the degree of video 

quality loss according to the emotion input. The first one, denoted 

by Sth, stands for the threshold size of NAL units. For example, a 

NAL unit for P-frame of B-frame is considered fine to be 

abandoned if its size is smaller than or equal to S_th. The second 

parameter, denoted by f, indicates how frequently to delete NAL 

units. Generally, if the input bitstream has n NAL units, the sizes 

of m NAL units (for P-frames or B-frames) are smaller than or 

equal to S_th bytes, the number of deleted NAL units will be m/f. 

Larger Sth stands for larger m, and larger m/f indicates more data 

is to be abandoned, leading to more power saving but worse video 

quality, and vice versa. As the input bitstream goes through the 

Input Selector and stores in the Pre-store Buffer, the category and 

size of each NAL unit are analyzed. If a NAL unit is decided to be 

deleted, the Input Selector will adjust the writing address of the Pre-

store Buffer to replace the NAL unit to be abandoned. While the 

Input Selector writes data to the Pre-store Buffer, the Circular 

Buffer fetches data. Therefore, a hand-shake scheme is established 

between the Input Selector and the Circular Buffer to avoid read-

write conflicts. Overall, in the proposed affect-driven H.264 video 

decoder, the emotion input decides the degree of video quality loss 

by tuning values of S_th and f, and deactivating the Deblocking 

Filter, which makes the power saving adjustable according to the 

users' emotions. 

The proposed H.264/AVC decoder design is implemented 

using commercial 65-nm CMOS technology with the layout shown 

in Fig. 6. The decoder has a size of 1.9 mm2 with a supply voltage 

of 1.2V and runs at a clock frequency of 28MHz. The introduction 

of the Pre-store Buffer causes 4.23% area overhead compared with 

the conventional design. By altering the threshold size S_th, the 

frequency f of deleting NAL units, and the activation of the 

Deblocking Filter, four working modes of the video decoder are 

provided in Fig. 6. The standard mode, meaning all NAL units are 

processed and the Deblocking Filter is not deactivated, provides the 

best video quality with the highest power consumption. The 

deactivation of the Deblocking Filter mode leads to 31.4% power 

reduction and fuzzy MB edges as shown in the circled part of the 

corresponding video frame. The deletion mode, with S_th=140 and 

f=1 as an example, reduces the power consumption by 10.6%, and 

the output image enjoys a slightly better video quality than that of 

the deactivation mode. The combination of deactivating the 

Deblocking Filter and deleting input data yields the most power 

saving among the four modes (about 36.9%) at the cost of the 

highest quality loss. 

 

Fig. 7 App usage pattern by category from 4 users with different 

personality (left). Android emulator specification table with screenshot 

(right). 

To simulate the proposed affect-driven video playback 

operation, we applied our proposed scheme to uulmMAC database 

[24].  In [24], the skin conductance (SC) signals were measured on 

a user when watching a visual-search-task video for 40 minutes and 

user’s emotion is labeled as “relaxed”, “distracted”, 

“concentrated”, etc. Hence, the magnitude of the varying SC signal 

could be used to derive users' emotions. While the emotion to video 

mode control configuration can be programmed based on the user's 

preference, we made a simplifying assumption in this case: When 

the user is in distracting status, the quality of the video is not 

SC Signals

Standard DeactivatedSth = 140  f = 1Deactivated Sth = 140  f = 1

Time (min)
 0 14 20 29 40(Distracted) (Concentrated) (Tense) (Relaxed)

Standard Deactivated

N
o

rm
. P

o
w

er

0

0.25

0.5

0.75

1

Standard Deactivated

36.9%

Power in Different Emotion Status

10.6%
31.4%

Pre-store 
Buffer

Sth = 140  f = 1
Sth = 140  f = 1
Deactivated

Sth = 140  f = 1
DeactivatedSth = 140 

 f = 1

23.1%
Energy 
Saving

Subject 1 Subject 2

Subject 4Subject 3

Agreeableness
willingness to 

trust

Median 
Average

Cheerfulness
Happiness

Excited

Emotion
Robustness

Calm Messaging

Social_Networks

foto

Settings

Music_Audio_Radio

Timer_Clocks

Calling
Calculator

Internet_Browser

E_Mail

Shopping
Sharing_Cloud

Camera
video

TVVideo_Apps

Gallery
System_App
Calendar_Apps

Platform Android Studio 2021
Emulator Version Android 11 API 30 

CPU CORE 4
Ram Allocation 4096 MB
Rom  Allocation 32GB
# of Total Apps 44

Resolution 1920x1080

490



critical, the affect-driven H.264 decoder works in the most power-

saving mode with the deactivation of the Deblocking Filter as well 

as S_th=140 and f=1, namely all the NAL units with size ≤ 140 

bytes are abandoned. As the user becomes concentrated as 

indicated by the impulse of the SCL signal at the time of 14 minutes 

in Fig. 6, the Deblocking Filter is turned on, resulting in better video 

quality and higher power cost. When the user is highly concentrated 

at the time of 20 minutes, the standard mode is turned on to provide 

the best video quality with the highest power consumption. When 

the user is at the relaxed emotion at the time of 29 minutes, the 

Deblocking Filter is deactivated again to trade video quality for 

power saving. Compared with displaying the whole video in the 

standard model, the affect-driven playback of the video saves an 

overall 23.1% energy consumption. The power adjustment strategy 

is subjective to the user and hence is expected to be personalized 

and reprogrammed with the hardware capability provided in this 

work.  

5 AFFECT-DRIVEN APP and MEMORY 

MANAGEMENT 

5.1 Phone App Usage Analysis with Affects and  

App Background Management Scheme 

Due to the lack of an existing affect database with high-level 

smartphone system usage, we use a personality-based cellphone 

usage database as an approximation to users’ affect related behavior  

because personality is strongly related to long-term affects.  In prior 

research on the personality and the daily cell phone usage pattern 

[25], 640 subjects' personalities were evaluated by a score system 

based on Openness (O), Conscientiousness (C), Extraversion (E), 

Agreeableness (A), and Emotional Stability(ES) and subjects' daily 

cellphone usage were recorded. In this work, we randomly picked 

4 subjects for study. The distribution of subjects’ top 20 daily used 

apps is shown in Fig. 7. Among the four subjects, messaging and 

internet browsing dominate the daily app usage with about 60% to 

70% in total. The rest 30% to 40% app usage shows a large 

variation among the four subjects depending on their personality. 

The first subject with high score of “agreeableness and willingness 

to trust” accesses the radio, sharing cloud and TV video apps 

frequently. The second subject has a moderate personality with 

median scores from the score matrix has the same amount of app 

usage on sharing clouds, internet browsing, and tv video Apps. The 

third subject with high “cheerfulness and positive mood” scores has 

more App usage on calling and shared transportation. The fourth 

subject with median scores also has very even app usage patterns. 

In this work, we use different subject’s personality to emulate the 

impact of different affects to the user’s App usage patterns. 

 

Fig. 8 Emotion adaptive App background management flow. 

In modern OS of smartphones, e.g. Android, the smartphone 

App manager keeps frequently used app running or cached within 

the memory to save the loading energy and startup time. For the 

apps with a lower chance of running, the OS will keep the Apps 

until the new app is being used and the memory or background 

process limit is reached. Since the activation possibilities of 

running Apps have a high correlation to the person's emotional 

states, we explore an affect-driven strategy where the smartphone 

keeps the most possible Apps in the background according to the 

detected user emotion states and kill the unlikely Apps when the 

process limit or memory was reached leading to saving of the 

memory fetch or reloading efforts from flash drive to the memory. 

Fig. 8 shows the proposed emotion or affect adaptive app 

background management flow. In a typical Android App 

management scheme, the foreground service module is responsible 

for running the Apps with user noticeable operations like 

notifications. The background service module manages the 

background App activities. The proposed affect-adaptive App 

management scheme is working with the background manager to 

decide whether to keep the App in background or remove it from 

the list when the number of background Apps is over the process 

limit (e.g. typically 20 in Android OS) or the free memory space 

has run out. The emotional background manager has an App rank 

generator and a background “App Affect Table”. The App Affect 

Table stores the the user specific app usage pattern with certain 

emotional states. To save the power cost by loading Apps from 

flash drive, the affect-adaptive App manager provides the more 

likely Apps higher priority based on the detected user’s emotion. 

When the emotion changes, the preferred Apps based on the new 

emotion state will be given a higher priority and push other Apps 

to a lower rank. Compared with the first-in-first-out strategy in the 

basic Android system, this method saves significant memory 

loading power and time on the frequently used Apps. 

5.2 Experimental Results 

Fig. 9 Process running diagram in exciting emotion state and calm 

emotional state with system default baseline scheme (top) and proposed 

scheme(bottom). 

Fig.7 (right) shows our experimental setup using an Android 

Emulator with 4 GB memory on Android 11. A total of 44 Apps 

selected from the database were installed on the emulator to 

represent the daily used App from each category reported in the 

previous study [25]. A monkey script was used to simulate the 

user's daily usage pattern to open certain Apps with a given 

frequency and duration to match the probability of the subjects' 

daily statistics of App usage as in Fig. 7. The monkey script also 

generates random touch and typing inputs during the interaction 

with each Apps. Meanwhile, the Android system developer tracing 

tool traced the CPU and memory usage pattern which are recovered 
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by Perfetto developer API for data analysis. To reduce the 

simulation duration, we shortened the operation time of each app 

and remove the idle time of the users, which will not have 

significant impact to the results since our focus is on the loading 

activities of each new App being activated. 

Fig. 9 shows the simulated user daily App usage pattern. The 

pattern are generated from subject 3 and 4 who represent excited 

mood and calm moods. The horizontal green line shows each 

application process' lifespan during the simulation, while the grey 

line represents that the process is not running or being killed. The 

first 12 min stands for the user are in excited emotion state and 

followed by a 8 mintues calm emotion state. In the original default 

setting(top), the system follows mostly a first-in-first-out killing 

strategy when new Apps kick in and reach the process limit (default 

limit at 20) or memory limit. The exceptions are system Apps and 

frequently used processes of the users, such as Android messages, 

which are never killed due to the periodic usage. The bottom figure 

shows the affect-driven App management where the most likely 

Apps related to the exciting emotion were kept in the memory. The 

unlikely used Apps based on the users' emotional usage pattern was 

killed soon after new Apps kicked in to release memory. After the 

emotional state changes, the killing priority of Apps is also adjusted 

according to the emotional usage pattern. The Apps unrelated to the 

emotional state were likely being killed to release memory spaces.  

 

Fig. 10 Total memory loaded at App start time (left) and App loading 

time (right) in the case study of this work.  

Fig. 10 shows the total amount of loaded memory at App start 

time and loading time by the selected Apps during the simulated 

affect-related App usage sequence shown in Fig.9. In the proposed 

emotion driven management case, the memory loading saving 

comes from roughly equal saving of file loading from flash drive 

and app-specific allocated memory space. As shown in the figure, 

the proposed scheme achieves 17% saving of total memory loaded 

at App start, and 12% saving of loading time compared to the 

system default background management scheme.  

6 CONCLUSION 
The real-time emotion based affective computing offers an 

unprecedented path to tighten the connection between human users 

and edge devices. In this paper, we explore a deep collaboration 

between human emotions and embedded hardware management to 

achieve enhanced computing efficiency on resource-limited edge 

devices.  Different machine learning classifiers were studied to 

guide the model selection on resource limited edge devices. An 

affect driven hardware video decoder was proposed achieving up 

to 23% power saving following the proposed adaptive scheme. An 

affect driven application and memory management scheme on the 

Android operating system was also proposed with up to 17% 

savings on memory loading thanks to the system adaptation to the 

real-time user’s affect.  
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