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ABSTRACT 

The incorporation of artificial intelligence into the rapidly 

growing IoT devices demands a high level of built-in intelligence, 

e.g. machine learning capability at the device level.  Affective 

computing offers a new degree of cognitive intelligence into edge 

processing IoT devices by inferring human emotion, stress 

levels for intelligent human assistance.  This work explores the 

design space and runtime optimization opportunity for affective 

computing at the system-on-chip (SoC) level.  A design 

optimization methodology for the neural network classifier and 

runtime power management schemes are proposed to achieve 

high energy efficiency on embedded low power devices.  A test 

chip based on a 65nm CMOS process was used to demonstrate the 

proposed methodology on emotion and stress classification for 

affective computing.  An average power saving of 45% is achieved 

with a peak power savings of 60% from the proposed emotion-

driven adaptive power management scheme.    
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1 INTRODUCTION 

Ultra-low power Internet-of-Things (IoT) or wearable 

embedded devices have become one of the fastest-growing industry 

segments. According to a survey from Cisco, the number of devices 

has sustained an exponential growth rate and will soon reach 50 

billion connected devices [1].  While low power and low cost have 

been the critical masks for IoT devices, the recent rapid 

development of artificial intelligence (AI) brings a new level of 

challenges to such devices, i.e. how to create more intelligence into 

the resource-limited edge devices.  From the hardware point of 

view, the incorporation of machine learning operation into the 

embedded system has provided a strong boost to the capability of 

edge processing IoT or wearable devices. Many commercial IoT 

products have already had built-in artificial intelligence into 

devices such as smart home products from Nest Labs or similar 

emerging companies [2].  At chip level, a rapid development 

happens on integrating machine learning accelerators into the IC 

chips to facilitate the support of AI from hardware devices [3]. 

However, the resource limitation and extremely low power budget 

have become the bottleneck of the development of intelligent edge 

devices.  As a result, dedicated design methodology and intelligent 

power management schemes are strongly needed for such devices 

to support resource and power consuming operation of machine 

learning techniques, which is the focus of this paper.   

A class of commonly used edge devices is the wearable 

medical device where human’s daily activities and health 

conditions are actively monitored for interactive human assistance 

[4].   While numerous human daily activities and health indicators 

such as heart rate, blood pressure, calorie intake etc. have already 

been tracked from such wearable devices, there is currently a lack 

of dedicated hardware support for the detection of human emotion.  

As a matter of fact, human emotion or mood provides a rich amount 

of information on human cognition.  Hence comprehension of 

human emotion serves as a gateway towards the new generation of 

artificial intelligence [5].  To better understand and manage human 

emotion, the so-called affective computing techniques are gaining 

more and more attention to the development of advanced AI-

empowered devices.   

Affective computing refers to the study and development of 

intelligent systems and devices that can recognize, interpret and 

classify human affects which include both short-term stress, 

emotion and long-term personality, depression, etc. [6].  Due to the 

nature of the highly interdisciplinary study, affective computing 

requires close collaboration among computer science, engineering, 

psychology and as a result, a low power IoT technique that 

integrates heterogeneous physiological sensors and machine 

learning capability becomes an enabling technology to support the 

development of affective computing [7].  

  Many prior studies were demonstrated using off-shelf 

physiological sensors to track human emotion.  MIT media labs 

demonstrated that commercial wearable devices can be used to 

detect a variety of human affects.  For instance, the driver’s stress 

was detected using a combination of electromyogram (EMG), 

electrocardiogram (ECG), respiration and skin conductance (SC) 

sensors. The detection of stress helped manage driver’s driving 

behaviors to reduce the chances of accidents [8].  People’s 

happiness was also inferred from a combination of SC, 

accelerometer data as well as person’s location history achieving 

an accuracy of around 70% [9].  Furthermore, combining with cell 

phone activities, people’s emotions for the next day can be 

predicted with high fidelity [10]. To better model people’s stress, a 

new stress model “cStress” was proposed based on ECG, 

respiration and accelerometer data showing 90% accuracy 

compared with self-reported stress [11]. Besides, based on 

physiological ECG detection, a just-in-time stress intervention 

scheme was also proposed by Microsoft to mitigate workplace 

stress through evaluation of employee’s stress and mental load [12]. 

Recently, as virtual reality (VR) becomes a new venue for home 

entertainment and online business, affective computing offers an 

alternative path to track users’ experience.  For instance, an 

interactive gaming system was proposed to adaptively change 

gaming scenes and levels of difficulty based on the gamer’s 

emotion.  In such an application, a fast emotion tracking at a scale 

of seconds was delivered from EEG and ECG measurements to 

support the highly dynamic activity change in VR gaming [13].  

The application of emotion and stress classification spans beyond 

daily activity tracking. A personality detection system was 

developed based on monitoring the physiological signal response 

from the users when watching video clips [14].  A web browsing 

user experience was monitored based on user’s pupil dilation to 

web content [15].   



Despite the above growing popularity in using wearable  

devices for affective computing, there is a lack of discussion from 

the hardware perspective on how to design and manage the devices 

for efficient computing.  In fact, almost all the works above relies 

on machine learning techniques, e.g. artificial neural network 

(ANN), support vector machine (SVM), decision tree (DT) to 

perform emotion classification.  Due to the lack of machine 

learning support on existing IoT devices, almost all the above work 

was based on online sensing but offline classification from PC or 

smartphone rendering major limitation of affective computing for 

wearable devices.  Due to the lack of existing study on how to 

develop energy efficient ASIC chip for affective computing, this 

paper, to the best of our knowledge, for the first time, performs a 

systematic study on design space and power, accuracy, 

performance tradeoff in designing machine learning empowered 

edge devices for affective computing.  The contributions of this 

work are summarized as below: (1) from hardware perspective, the 

design tradeoff between hardware cost, and accuracy is studied 

with optimization method proposed for implementing machine 

learning algorithms, e.g. neural network on a chip; (2) a thorough 

analysis on power consumption of IoT device for affective 

computing is provided based on real design and usage scenarios 

showing tradeoff between the power and accuracy; (3) A runtime 

adaptive power management scheme is proposed to achieve higher 

power efficiency; (4) A 65nm CMOS test chip was used to 

demonstrate the proposed adaptive scheme with more than 2X 

power saving.              

2 AFFECTIVE COMPUTING MODEL 

AND DATABASE 
Fig. 1(a) shows the typical system level configuration for 

affective computing based on physiological signal processing. 

Various physiological signals such as ECG, EEG, EMG, SC are 

sensed by low noise amplifiers (LNA) to deliver a large analog 

signal for later stages.  Mixed-signal circuits such as analog to 

digital conversion (ADC) and feature extraction circuits are used 

on the sampled physiological signals to reduce the dimensionality 

of the incoming data.  A classifier such as a neural network is used 

to create final classification results for people’s emotions.   

 
Figure 1: (a) Configuration and signal flow for affective computing; (b) 

Russell’s Circumplex Model [18]. 

Despite a large variety of applications from affective 

computing, this work focuses on emotion and stress classification.  

For stress classification, this work uses the database released from 

MIT media lab on driver’s stress detection from the real-life 

measurement of drivers’ physiological signals [16].  The database 

provides classification labels of rest, highway and city representing 

drivers’ stress conditions.  Although the MIT database only 

provides a coarse measurement of stress, the driver’s stress 

detection serves as an important application space for affective 

computing.  The requirement for both high accuracy and fast 

response in driving conditions leads to a strong demand for an 

efficient wearable device with built-in machine learning capability 

for fast classification.   

To further explore challenges in emotion classification with 

finer granularity, we also study the DREAMER database which 

uses off-the-shelf ECG and EEG sensors to detect human’s emotion 

[17].  DREAMER database provides labels on the widely used 

Russell’s Circumplex model for emotion classification [18].  Fig. 

1(b) show the Russell’s circumplex model where the two-

dimensional space of valence and arousal are used to construct 

people’s emotion, such as happiness, upset, and calmness based on 

the mood angle formed by valence and arousal.  Classification 

accuracy is reported based on the values of valence and arousal.  A 

third variable, dominance is also provided in the database but is not 

commonly used.  In this work, we focus on valence and arousal for 

emotion inference and use the average accuracy of the two values 

for accuracy evaluation.    

This work targets applications with stress classification for 

drivers and emotion detection from gaming or virtual reality 

system.  In both cases, fast responses are needed.  It has been 

reported that phasic change of human skin conductance which 

represents mood swing reaches peak values in 1~5 seconds [15].  

Hence, we constrain our classification jobs to be completed within 

5 seconds.  In different applications, such as emotion detection for 

online movie recommendation or depression detection, such a 

requirement can be significantly relaxed.    

3 HARDWARE-AWARE CLASSIFIER 

OPTIMIZATIONS  
Although many machine learning algorithms have been 

explored in previous affective computing studies [17], there is a 

lack of study considering the dedicated ASIC implementation.  In 

this work, we explore the design space as a tradeoff between power, 

area, and accuracy.  While existing work uses a variety of machine 

learning schemes such as ANN, SVM, DT, etc. as classifiers, we 

focus on ANN/DNN in this work due to its high accuracy, 

scalability, and popularity in the current study.   

3.1 Design of Neural Network Classifier 

In this work, we used a pipelined multi-layer neural network 

accelerator as our baseline design [19,20].  As will be shown in our 

implementation of the SoC chip, the neural network classifier 

contributes 65% of total area and becomes the largest component 

of the chip.  As a result, it is important to consider the silicon cost 

when designing the classifier as IoT devices are extremely sensitive 

to the silicon cost.  The optimization of neural network architecture 

is dictated by the tradeoff between accuracy, silicon area and power 

consumption. In this study, we vary design parameters such as 

numbers of neurons in each layer, number of layers to achieve the 

target accuracy while minimizing power and area cost. 8-bit 

precision is used in this work. Training is performed offline from 

PC and weights are downloaded on the SoC chip for classification. 

As will be shown later, the leakage power consumption of the 

neural network and SRAM dominates the total digital power 

consumption due to the long intervals between inference tasks. As 

a result, the power optimization for the digital classifier is closely 

related to the optimization of silicon area including neural network 

size and SRAM spaces.   In this work, we assume no power gating 

is implemented and no non-volatile memory is available to off-load 

neural network weights.   

Fig 2(a) shows the change of accuracy and memory space for 

the neural network as the number of layers increases in the 

DREAMER database. The three-layer fully connected neural 

network is observed to provide the almost-best accuracy.  Further 

increasing layers does not improve the accuracy anymore while 

incurring more than 20% more memory overhead for each 

additional layer.  The accuracy further degrades beyond four layers 

due to the difficulty of back-propagation training. As a result, the 
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optimal number of layers appears to be 3 or 4 layers.  Fig 2(b) 

shows the effect of neuron numbers on accuracy and memory 

space. As the number of neurons increases, the prediction accuracy 

increases while the rate of increase starts to saturate after 60 

neurons. The amount of memory space needed also increases 

proportionally with the number of neurons used.  As a result, 40~60 

neurons appear to be the optimal solution for the application 

whereas the memory space increases by 34% from 40 to 60 neurons 

with an accuracy change of 2%.  The above study is repeated on the 

driver stress database showing similar observation and hence is 

omitted in this work.  

 
Figure 2: Accuracy and memory space (a) versus the number of layers; 

(b) versus the number of neurons.  

3.2 Optimization of Feature Extraction  

Feature extraction also consumes a significant amount of total 

powers and hence needs to be optimized. In this work, we extract 

the commonly used time-domain features, e.g. mean, variance, 

histogram, zero-crossing, slope absolute sign change, to pass to 

neural network due to the low computation cost of the time-domain 

features compared with features such as Fourier Transform (FFT), 

Discrete Wavelet Transform (DWT) which are highly expensive to 

implement on an edge device.   

Fig 3(a) shows the power consumption for generating each 

feature from each incoming signal assuming a continuous run.  For 

example, the histogram would require the most power to be 

generated while the zero crossing requires 6X less power. However, 

feature ranking by power does not consider the significance of each 

feature for contribution to the final classification.  Hence, a more 

sophisticated ranking methodology needs to be developed to 

evaluate the importance of the features.  

Algorithm 1 Variance-Power Score 

Procedure   VP_Score (label_list, channel_list, feature_list, 

feat_power, data) 

1. foreach feature ∈ feature_list do 

2.     foreach channel ∈ channel_list do 

3.      data_s←get_feature(data, channel, feature, sensor) 

4.         foreach i ∈ label_list do 

5.             foreach j ∈ label_list && j > i do 

6.                   dist1←extract_distribution(data_s, i)   

7.                   dist2←extract_distribution(data_s, j)  

8.                   score_feat(i,j)←ttest (dist1, dist2)   

9.              end for 

10.         end for 

11.      channel_VP_score(channel)←mean(score_feat) *ft_pwr 

12.     end for 

13. end for 

14. return VP_feat_scores  //return the scores 

To assist in identifying the importance of each feature, we 

propose a ranking scheme based on a “variance power score”, 

which is the product of “variance” and power for each feature. The 

“variance” comes from the Kolmogorov-Smirnov statistical test for 

comparing two different samples. This statistic represents how 

distinguishable the feature is at various classification labels.  The 

more variance the feature has, the easier for the classifier to perform 

based on the feature.    Algorithm 1 shows the optimization strategy 

of building a variance-power score for each feature. 

 In the above algorithm, variance across various groups is 

compared. Fig. 3(c) shows the variance-power scores across 

various features. To achieve the highest efficiency, features with 

lower feature power scores, e.g. variance or slope absolute sign 

change can be removed to reduce power consumption. Fig 3(b) 

shows the accuracy tradeoff for removing the least important 

features across different feature-channel pairs. The accuracy is 

compared with random removal.  As shown in the figure, with 25% 

removal of features, a 3% accuracy loss and a 25% power saving is 

observed.  Compared with random removal, 3% more accuracy is 

gained using the proposed ranking methodology.  If 13% feature is 

removed based on the ranking, 20% power saving can be achieved 

with only 1% accuracy degradation, which represents an optimal 

power/accuracy tradeoff.    

 
Figure 3: (a) Power comparison among features.  (b) Effect of feature 

reduction based on proposed variance-power score. (c) Variance-power 

score of each feature.  

4 RUNTIME POWER MANAGEMENT 

4.1 Operation Modes 
Different from high performance computing, physiological 

signals are slowly varying signals measured at a scale of seconds. 

It requires high gain low-noise amplifier to amplify micro-volt 

signal into hundreds of millivolt range to satisfy the input 

requirement of mixed-signal circuits such as ADC. In the 

DREAMER database, there are 14 channel EEG signals and 2 

channel ECG signals. In the Driver database, there are 1 ECG 

signal, 1 EMG signal, 2 skin conductance signal, 1 respiration 

signal as input. The total power consumption was highly related to 

the working duration of LNA & mixed-signal circuits (MSC). As a 

result, a new power management paradigm is observed in this work. 

Fig. 4(a) and Fig. 4(b) shows two different working modes. When 

chip is working on the continuous mode, LNA & MSC must 

continuously run for sampling the incoming data. The neural 

network will be clock gated after a classification is finished. As a 

result, LNA and MSC dominate total power consumption.  To 

reduce their power consumption, we study a duty-cycle operation 

mode where the LNA and MSC are only turned on for a fractional 

period of time. Effectively, the total numbers of raw signal samples 

are being reduced leading to a drop of accuracy.  Our study shows 

that within a classification interval, e.g. 5 seconds, the classification 

accuracy strongly depends on the total number of samples in use 
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but does not strongly depend on when the sampling happened 

within the classification interval.  Hence, the duty cycle directly 

impacts the final accuracy. Below are the equations for the 

calculation of total power based on the duty cycle of the operation. 

𝐷𝑃𝑇𝑜𝑡𝑎𝑙 = 𝐷𝑃𝑁𝑁 × 𝐷𝐶𝑁𝑁 +  𝐷𝑃𝑆𝑅𝐴𝑀 × 𝐷𝐶𝑆𝑅𝐴𝑀 + 𝐷𝑃𝐿𝑁𝐴 × 𝐷𝐶𝐿𝑁𝐴   
+ 𝐷𝑃𝑀𝑆𝐶 × 𝐷𝐶𝑀𝑆𝐶                                                        (1) 

𝐿𝑃𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑃𝑆𝑅𝐴𝑀 +  𝐿𝑃𝐿𝑁𝐴 +  𝐿𝑃𝑀𝑆𝐶                                                                 (2) 

𝑃𝑜𝑤𝑒𝑟𝑇𝑜𝑡𝑎𝑙 =  𝐿𝑃𝑇𝑜𝑡𝑎𝑙 + 𝐷𝑃𝑇𝑜𝑡𝑎𝑙                                                              (3) 

where DP is dynamic power, LP is leakage power, and DC is the 

duty cycle within the 5-second window.  

 
Figure 4: (a) continuous run mode; (b) Duty cycle mode with 20% DC; 

(c) Power contributions by each circuit on DREAMER and Driver 

database in two operating modes.  

Fig. 4(c) shows the power contribution by different scenarios 

under two databases on continuous mode and duty cycle mode. The 

LNA and MSC contribute most power consumption. The leakage 

power from SRAM and neural network also contribute significantly 

to the power consumption. It is interesting to observe that in 

affective computing, the active power from the neural network is 

less than 5% of the total power. This is because the neural network 

only requires millisecond to finish classification and remains shut-

off most of the time. Compared with continuous run mode, 

significant power saving is observed due to the duty cycle at an 

expense of accuracy loss from the shorter sampling time.  

4.2 Power and Accuracy Tradeoff 
Fig 5 shows the accuracy and power changes as a function of 

the duty cycle in DREAMER database and Driver database. As the 

duty cycle decreases, accuracy generally decreases.  For instance, 

at a 50% duty cycle, a 3% accuracy loss is traded off with 30% 

power saving. Further reduce the duty cycle to 20% can reduce 

power by 3.3X with 4% loss of accuracy. Based on this observation, 

we proposed an adaptive power management scheme as will be 

discussed in section 4.4.   

4.3 Proposed Voting Strategy for Accuracy  

To help improve prediction accuracy while sustaining lower 

power of operation, this work proposes a voting strategy.  Since the 

total time for a decision is made at a much slower rate of every 5 

seconds, it is possible to vote on the results of multiple times with 

smaller sampling window. By increasing the number of 

classifications used to make a final prediction, we are essentially 

filtering out the number of misclassifications. Equation 4 shows the 

ideal improvement by using multiple window voting.  

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 = ∑ (
𝑊

𝑥
)

𝑊

𝑥=𝑊/2

𝑝𝑥(1 − 𝑝)𝑊−𝑥                                      (4) 

where p is the prediction accuracy, W is the number of windows to 

be looked back at. According to the equation, ideally the higher the 

prediction accuracy is, the greater the improvement is for the voting 

scheme. As shown in Fig. 6, compared with ideal improvement 

from (4), the simulation shows a similar trend with lower 

improvement because samples are temporal correlated and are 

likely misclassified to the same label. This prevents achieving 

theoretical voting benefits.  As shown in Fig. 6, for both the 

DREAMER and driver database, the ideal combination would be 

to use a continuous 1s window with 5 sample voting. Compared to 

using 5s continuous operation, the accuracy improvement is 2% for 

the same power consumption.  Note that in the voting scenario, the 

dynamic power of neural network classification increases by 5 

times growing from the original 0.1% to 0.4% of the total power, 

which is still insignificant in total power consumption.  

 

Figure 5: Duty cycle optimization: (a) & (b) DREAMER accuracy vs 

duty cycle and associated power saving; (c) & (d) MIT Driver Stress 

accuracy vs duty cycle and associated power saving.  

 
Figure 6: Accuracy with varying number of votes for (a) DREAMER 

database (b) MIT Driver Stress database. 

4.4 Emotion Driven Adaptive Power 

Management and Sampling 
In this section, we propose an adaptive power management 

and sampling schemes for affective computing based on 

DREAMER emotion database and MIT driver stress database.  The 

affective computing can be used to manage device power 

consumption to adapt to human’s psychological state during real-

life operation, e.g. playing video games or driving. When a 

sensitive state like fear or high level of stress was detected, the chip 

can dynamically increase the sampling period to increase the 

classification accuracy. When a non-sensitive state like calmness 

was detected, the chip will drop the sampling duty cycle to achieve 

longer battery life.  
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Figure 7: Illustration of proposed emotion driven adaptive power 

management and sampling scheme for (a) Driving scenario. (b) Gaming 

scenario. 

For the DREAMER database, we used a scheme that the video 

game can dynamically change the difficulty level and environment 

atmosphere based on emotion state sensed by the chip [14]. A 

higher level of difficulty and more stressful gaming rhythm will be 

provided when a low level of emotion like calmness or relax was 

detected on gamers. At high excitement state, a higher sampling 

rate is utilized to achieve higher classification accuracy due to the 

intensity of the actions.  At calm state, a lower sampling rate is 

applied to save power.  To perform this task, 6 datasets from 

DREAMER database with target emotions of excitement, fatigue, 

and calmness.  In the initial state, the chip works on the continuous 

mode to get the most precise result at the setup phase. When the 

excitement emotion is detected, the chip works in the continue 

sampling mode for sensing the gamers emotion condition with high 

accuracy. When fatigue emotion was detected, the chip will change 

to 60% duty cycle mode to reduce power and indicate the video 

game to lower the difficulty and change the environment 

atmosphere in the game. When the calmness emotion is detected, 

the chip will be set to a 20% duty cycle to further save the power 

and indicate the video game to gradually increase the difficulty and 

intensity of the game to make the video game more challenging. 

On driving cases, we set up a scheme that the music of radio 

channels or A/C temperature can be adaptively changed based on 

the detected driver’s mental stress. We dynamically manage the 

sampling rate of the device to adapt to the accuracy needed for each 

driving scenario to achieve better energy efficiency of the IoT 

device.  The driver’s stress level is related to different driving 

environment.  The city driving scenario needs much higher 

attention with a high level of stress measured from the affective 

metrics.  The highway scenario produces less stress level due to the 

fewer dynamics of the environment.  As a result, we propose to 

dynamically vary the sampling rate to obtain better power and 

accuracy tradeoff in different scenarios based on the detected 

driver’s stress level. Fig. 7 shows the proposed operation condition.  

In the initial state, the highest sampling rate, i.e. continuous mode 

is applied as the driver’s stress condition is unknown.  As more 

stress results are detected, based on the different driving scenarios, 

different duty cycle modes are applied.  As shown in Fig. 7, 

continuous sampling is applied for city condition providing the best 

accuracy of detection. For highway condition, a 50% duty cycle is 

applied. At rest condition, a 20% duty cycle is applied.  

Correspondingly, the accuracy varies from 69% to 75% depending 

on the stress level of the driver.  Many potential applications can be 

applied with the proposed scheme such as in-vehicle entertainment 

systems or air-condition controls rending interesting future 

developments from affective computing. 

5 EXPERIMENTAL RESULTS 
5.1 Design Overview 

To verify the proposed scheme, a 65nm CMOS test chip is 

fabricated in a low power process as shown in Fig. 8 with design 

specifications. The chip is designed with up to 12 analog input 

channels integrating front-end low noise amplifier, mixed-signal 

data conversion, feature extractions and back-end neural network 

classifier. All the output features are sent to a neural network 

classifier with on-chip SRAM cache storing off-line trained 

weights.  Clock-gating is implemented for the neural network and 

SRAM to dynamically turn on and off the active power.   

 
Figure 8: Chip configuration and specification of the test SoC chip.  

 

Figure 9: Die micrograph and Test setup. 

Fig. 9 shows the die photograph and test setup.  The test chip 

is mounted on a test PCB board. An FPGA was used as an interface 

for controlling the chip and scanning in and out the data for 

verification. The selected recorded analog signal channels from 

MIT Driver Stress database [17] and DREAMER database are 

replayed with sufficient amplification using the USB-DA12-8A 

digital to analog converters (DAC) from ACESS. When doing the 

measurement, due to the limit numbers of LNAs built in the 

fabricated chip, we selected only five physiological signals for each 

driver: Electrocardiogram (ECG), Left-shoulder electromyogram 

(EMG), Left foot skin conductance (SC), Left-hand skin 

conductance and Chest cavity expansion respiration (RESP) for the 

Driver database or five EEG signals and one ECG signal from the 

DREAMER database for the VR gaming case. The chip is operated 

at the minimum voltage of 0.6V to achieve the lowest power 

consumption. 

5.2 Classification Accuracy and Power Saving 
Fig. 10 shows the classification accuracy of the adaptive power 

management scheme across two database cases. Five seconds 

windows are used across many samples. In DREAMER cases, the 

continuously run with excitement emotion achieves 76% accuracy 

with the highest power consumption while the Calmness emotion 
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uses a 20% duty cycle with 72% accuracy leading to 60% power 

reduction. In Driver case, the continuous run achieves 75% 

accuracy in the city condition, while the duty cycle mode of 50% 

and 20% are used in the highway and rest respectfully. The 

accuracy in these cases are 73% and 70%. 

Fig. 11 shows the measured sampling & classification 

waveforms on two databases cases. In the Driver database cases, 

the chip was set on continues mode on initial state and City state.  

After Highway state was classified, the chip worked on 50% duty 

cycle mode, then 20% duty cycle when Rest was sensed. In the 

Dreamer database case, the initial and excitement state was set in 

continuous mode. The 20% duty cycle mode was set when 

Calmness was detected. When fatigue was sensed, the duty cycle 

was shifted back to 60%. 

 
Figure 10: Power and accuracy of measurement.  (a) Power in driving 

scheme; (b) Power in Gaming scheme; (c) Average power saving in 

proposed schemes; (d) Accuracy in driving scheme; (e) Accuracy in 

gaming scheme.  

 
Figure 11: Measured input signal, sampling duty cycle & classification 

result waveforms in (a) driving scheme, (b) gaming scheme. 

Fig. 10 also shows the power measurements break down in 

various sampling methods.  Front end and mixed-signal circuits 

dominate the total power since it needs a continuous operation. The 

power consumptions are proportional to the average sampling time 

in each scenario. The average power using the proposed adaptive 

power management scheme is reduced by up to 45% compared with 

the continuous operation mode.  A peak power savings of 60% is 

observed at different stress states of the users.  More importantly, 

compared with conventional dynamic voltage and frequency 

scaling (DVFS) which does not consider user’s affective 

conditions, the proposed emotion-driven power management 

provides a new paradigm in device management in the era of 

artificial intelligence.  

6 CONCLUSION 
Affective computing provides a new dimension of cognitive 

intelligence for emerging machine learning empowered edge 

devices.  To study the hardware perspective of affective computing, 

this paper explores the design space and optimization techniques 

for designing dedicated ASIC chips.  An optimization scheme is 

proposed to deliver the optimal neural network topography as well 

as improving the power efficiency of feature extraction.  Power 

management techniques along with voting techniques are proposed 

to obtain the optimal tradeoff between power consumption and 

accuracy. An emotion-driven adaptive power management scheme 

is also proposed to provide runtime optimization for the energy 

efficiency of affective computing.  A 65nm CMOS test chip was 

used to demonstrate the proposed technique showing 30% to 60% 

reduction on the power consumption based on the sensed emotion 

of the users. 
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