
9 • 2020 IEEE International Solid-State Circuits Conference

ISSCC 2020 / SESSION 31 / DIGITAL CIRCUIT TECHNIQUES FOR EMERGING APPLICATIONS / 31.3

31.3 A Compute-Adaptive Elastic Clock-Chain Technique with
 Dynamic Timing Enhancement for 2D PE-Array-Based
 Accelerators
Tianyu Jia, Yuhao Ju, Jie Gu

Northwestern University, Evanston, IL

Dynamic timing error detection and correction techniques, e.g. razor flops, have
been previously applied to microprocessors to exploit the dynamic timing margin
within pipelines [1]. Adaptive clock techniques have also been adopted to enhance
microprocessor performance, such as schemes to reduce the timing guardband
for on-chip supply droops [2-3] or to exploit instruction-level dynamic timing
slack [4]. Recently, 2D PE array-based accelerators have been developed for
machine learning (ML) applications. Many efforts have been dedicated to improve
the energy efficiency of such accelerators, e.g. DVFS management for the DNN
under various bit precision [5]. A razor technique was also applied to a 1D 8-MAC
pipelined accelerator to explore timing error tolerance [6]. Despite of the above
efforts, a fine-grained dynamic-timing-based technique has not been implemented
within a large 2D array based ML accelerator. One main challenge comes from
the large amount of compute-timing bottlenecks within the 2D array, which will
continuously trigger critical path adaptation or pipeline stalls, nullifying the
benefits of previous dynamic-timing techniques [4, 6]. To deal with the difficulty,
we propose the following solutions. A local in-situ compute-detection scheme
was applied to anticipate upcoming timing variations within the PE unit and guide
both instruction-based and operand-based adaptive clock management. To loosen
the stringent timing requirements in a large 2D PE array, an “elastic” clock-chain
technique using multiple loosely synchronized clock domains was developed
enabling dynamic-timing enhancement through clusters of PE units.

Figure 31.3.1 shows the PE array design used in this work, based on a commonly
used deep-neural-network (DNN) accelerator supporting dataflow of both 2D
SIMD [7] and a tightly-coupled systolic array. Each PE is a configurable MAC unit
supporting various dataflows and variable bit precision from 1b to 8b similar to
that in [5]. The simulation results of the cycle-by-cycle timing variation of a single
PE unit running the MINIST database are shown. A wide range of dynamic timing
variation within each PE unit is observed. In addition, the longest critical paths
are activated less than 5% of the time and are determined by the operands, e.g.
at MSBs change, leading to operand-dependent dynamic timing margin. However,
the dynamic timing margin diminishes with the size of PE array increasing, i.e.
reducing from 40% to only 4% when the number of PEs increases from 1 to 128,
because a critical timing path can be activated in any PE unit. Therefore,
centralized adaptive techniques [4, 6] cannot exploit the dynamic timing margin
effectively for a large 2D PE array.

Figure 31.3.2 shows the top-level chip architecture. An 8-column 16-row PE array
is implemented supporting both 2D SIMD and systolic dataflow with variable bit
precision. Each row of 8 local PE units with supporting image/weight SRAMs are
clocked by a different clock domain. The critical timing paths inside a PE unit,
based on the instructions (configurations) being used, have been analyzed. The
longest paths are dominated by MAC operations at high precision (8b), while
critical paths are observed at varied PE locations when low precisions (4b or 1b)
are used. To discover the operand timing dependency, case-based static timing
analysis method with a commercial EDA tool is used to find out the worst-case
timing under certain transitioning conditions. A significant timing dependency on
the number of transitioning bits and the transitioning bits’ positions is observed.
To exploit such a relationship, the summation of the transitioning bits with
programmable significance are calculated to guide the dynamic clock
management.

Figure 31.3.3 shows details of the adaptive clock management technique. A root
PLL feeds the clock to a global DLL, which generates 28 equally delayed phases
of clock edges. The 28 phases are sent into 16 clock domains through a global
clock bus, travelling a total of about 1.5mm distance. Each phase is generated
from one delay stage of the DLL, with a delay step of about 50ps. The clocks for
each clock domain are dynamically chosen from the 28 phases of the clock bus
in a rotary manner, with a maximum phase offset constrained between
neighboring clock domains. The 28 wires of clock bus are carefully matched at
layout with dummy clocks at the boundaries, showing up to 4ps mismatch among
the nearby phases and 18ps static mismatch from end to end across the long
clock routing. The static mismatch across the long clock trace is not critical, as
only neighboring clock domains need to be carefully synchronized. To exploit the
instruction-based timing variation, tunable clock buffers are implemented for the
PE units to rebalance the pipeline timing under different instructions. At each clock
domain, a data detection and timing controller (DDTC) module is implemented to

dynamically select one clock phase through a glitch-free phase-selection mux
based on the compute operands to exploit runtime dynamic timing margin.

Figure 31.3.4 shows the synchronization policy between neighboring clock
domains which form an interlocked clock chain with constrained maximum phase
offset. Depending on runtime instructions/configurations, a programmable
maximum phase offset of up to 0.3ns (or 25% of clock period) among
neighboring clocks is set inside the DDTC. Data fetched from the image memory
is first passed through a single-stage data buffer. A transition detector, built from
XOR circuits, detects the transitioning bits, with their significance summed up
and sent to the following selection logic. The significance of each transitioning
data bit can be programmed to accommodate the timing margin difference and
PVT variations. A small lookup table for the summed significance value is used
to determine the target dynamic clock period settings . The phase-selection logic
utilizes the target clock period setting, as well as the phase offset information
from two neighbors, i.e. North and South neighbors, to decide which phase to
use for the next clock cycle. The overall data buffering and DDTC introduces a
negligible one clock cycle of latency in the accelerator’s execution. For 2D SIMD
dataflow, single transition detection is used for the entire row of PE units. For
systolic dataflow, because the data travels horizontally, the history of transition
results are kept locally and the worst case is selected across 8 previous clock
cycles. As a result of the chained operation, if one domain is too fast, it will be
locked by a neighboring domain until the neighbors catch up, leading to a wave-
like phase propagation. The data signals and the synchronization signals passing
across clock domains are carefully managed during timing closure to satisfy the
setup or hold requirements at PE boundaries.

A 65nm test chip was built to demonstrate the proposed clock chain scheme. Up
to four high-speed phases can be captured in a real-time oscilloscope
simultaneously during testing and the phase offsets in measurement ports are
calibrated. Clock phases across all the clock domains were repetitively measured
to reconstruct the clock propagation map. Fig. 31.3.5 shows the measured color
map representing the phase selection at each clock domain along execution
cycles. The locking conditions can be observed with a large phase offset between
neighboring clock domains. Different neural-network layers in MINIST and CIFAR-
10 database have been measured under various bit precisions with up to 19%
performance gain or equivalent 34% energy savings using reduced supply voltage.
At lower precision, as the timing is more limited by various control paths, the
operand-based adaptive operation offers less benefits. 2D SIMD dataflow shows
more benefits than the systolic dataflow which needs to consider the worst-case
timing within the past eight clock cycles. Fig. 31.3.6 shows the measured
performance gain with voltage scaling down to 0.5V and a comparison table with
previous adaptive- techniques. This work extends the dynamic-timing-detection
scheme to a large 128 PE array accelerator, which is difficult to handle using
previous adaptive schemes. A 3.3% area overhead is observed due to the use of
DDTC module and additional clock routing. Fig. 31.3.7 shows the die photo with
area and power breakdown of sub-modules.

Acknowledgements:
This work was supported in part by the National Science Foundation under grant
numbers CCF-1618065. We thank Integrand Software, Inc. for the support of EM
simulation tool.

References:
[1] Y. Zhang et al., “iRazor: 3-Transistor Current-Based Error Detection and
Correction in an ARM Cortex-R4 Processor,” ISSCC, pp. 160-161, 2016.
[2] K. Bowman et al., “A 16 nm All-Digital Auto-Calibrating Adaptive Clock
Distribution for Supply voltage droop tolerance across a wide operating range,”
IEEE JSSC, vol. 51, no. 1, pp. 8-17, Jan. 2016.
[3] M. Floyd et al., “Adaptive Clocking in the POWER9™ Processor for Voltage
Droop Protection,” ISSCC, pp. 444-445, 2017.
[4] T. Jia et al., “An Adaptive Clock Management Scheme Exploiting Instruction-
Based Dynamic Timing Slack for a General-Purpose Graphics Processor Unit with
Deep Pipeline and Out-of-Order Execution,” ISSCC, pp. 318-319, 2019.
[5] B. Moons et al., “ENVISION: A 0.26-to-10TOPS/W Subword-Parallel Dynamic-
Voltage-Accuracy-Frequency-Scalable Convolutional Neural Network Processor
in 28nm FDSOI”, ISSCC, pp. 246-247, 2017.
[6] P. Whatmough et al., “A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse
Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT
Applications,” ISSCC, pp. 242-243, 2017.
[7] K. Ueyoshi et al., “QUEST: A 7.49TOPS Multi-Purpose Log-Quantized DNN
Inference Engine Stacked on 96MB 3D SRAM Using Inductive-Coupling
Technology in 40nm CMOS,” ISSCC, pp. 216-217, 2018.

978-1-7281-3205-1/20/$31.00 ©2020 IEEE

2020_Session_31.qxp_2019 12/12/19 3:12 PM Page 9

10DIGEST OF TECHNICAL PAPERS •

ISSCC 2020 / February 19, 2020 / 2:30 PM

Figure 31.3.1: Commonly adopted PE array-based deep neural network
accelerator architecture and the observation of diminishing dynamic timing
margin from a single PE unit to a large PE array.

Figure 31.3.2: Chip architecture of this work; the critical paths inside and among
PE units; timing dependency on the number of transitioning bits and
transitioning bits' positions of PE input values.

Figure 31.3.3: Multi-phase clock bus design to distribute the clock sources to
all the clock domains; the dynamic clock-management scheme for each clock
domain.

Figure 31.3.5: Measured clock waveforms and the performance benefits for
benchmarks. Figure 31.3.6: Benefits with scaled voltage and comparison table.

Figure 31.3.4: The clock-chain synchronization policy between the neighboring
clock domains and the data detection and timing control module design.

31

2020_Session_31.qxp_2019 12/12/19 3:12 PM Page 10

• 2020 IEEE International Solid-State Circuits Conference 978-1-7281-3205-1/20/$31.00 ©2020 IEEE

ISSCC 2020 PAPER CONTINUATIONS

Figure 31.3.7: Die micrograph.

Figure 31.3.S1: The multi-phase clock distribution bus has been carefully
designed at layout to balance the total travel length of each clock phase.
Dummy phases (extra phases p-1 and p28 generated from DLL) are used to
match the boundary conditions for p0 and p27. Both RC extraction and
electromagnetic (EM) simulations are utilized to simulate the clock skews
between the neighbor phases showing up to 4ps phase mismatch after physical
design optimizations.

Figure 31.3.S2: The clock phase propagation for different dataflows within 200
cycles. The systolic dataflow has slower phase propagation due to consideration
of input operand transitions in the past 8 clock cycles, leading to less
performance benefit.

Figure 31.3.S3: The synchronization signals between the neighboring clock
domains need to be very carefully managed using STA during timing closure.
For example, the setup and hold-time margin for the Offset/Sel signals between
DDTCs are shown in the figure.

2020_Session_31.qxp_2019 12/12/19 3:12 PM Page 11

